Skip navigation

Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/624
Title: Design of neural network classifiers for pattern recognition applications
Authors: Chitra, A
Sivanandam, S N
Keywords: Neural Network
Classifiers
Pattern Recognition
Issue Date: 31-Oct-1998
Publisher: Anna University
Abstract: Patternrecognitiontechniquesareamongtheimportanttoolsusedinthefieldofmachineintelligence.NeuralNetworksisacomputational paradigminspiredbyhuman’srichestsense-visionandperception.Pattern recognitionistheprincipalactivityinallrealtimeapplications.Decision-makingprocessesofhumanbeingarerelatedtotherecognitionofpatterns.Inthisthesiswork,neuralnetworkclassifiersaredesignedforpatternrecognitionapplications.Thetaskofrecognitionofhandwrittencharactersischosenasan applicationdomainfortestingthestrengthsandweaknessesoftheproposedNeuralNetworkClassifiers.TheconventionalBackpropagationalgorithmfortrainingFeedforwardNeuralNetworksismodifiedwithanobjectiveofquicktraining.Adaptive Backpropagationalgorithm,whichdynamicallyadaptsthelearningconstantswiththeadaptationcyclesandtheerrorisproposed.Theerrorisfoundtodecreasefasterthaninconventionalalgorithms.Theperformanceofthe algorithmisprovedwiththeclassificationofIrisdatasetandrecognitionofhandwrittencharacters.Thenetworksizeplaysamajorroleinlearningand generalization.AdaptiveGeneticAlgorithmsareusedtodeterminetheoptimumsizeofthenetwork.Theredundantconnectionsthatcontributelittle ornothingareremovedbasedonthesensitivityoftheedgestotheerror. 11TheproblemsolvingcapabilityofaNeuralNetworkcanbeincreased bythecombinationofmultiplenetworks.Themultiplenetworksarepowerfulsolutionstorecognitionproblemsbecausetheymaketheindividualnetworks tolearnindependentlytheinputfromdifferentpointofview.Therecognition accuracyofsuchsystemsdependsnotonlyonthepredictionabilityofthe individualnetworksbutalsoonthewayinwhichtheiroutputsarecombined.AFuzzycombinerisdesigned toderiveacollectivedecisionfrom theoutputs oftheindividualnetworks.Thishasenhancedtheoverallrecognitionrateofthesystem.ADynamicself-organizingnetworkforpatternrecognition applicationsisproposed.Itdynamicallycreatesneuronsintheoutputlayerandbuildsupthenetwork.Neuronsarecreatedwheneveranewcategoryofpatternsispresented.ThewinnerisdeterminedbasedonminimumEuclidean distanceanditsweightsareupdatedaccordingly.Theneuronthatwinsfor multipleclassesaresplitinsuchawaythateachneuronrepresentsauniqueclass.Thisadaptiveprocessisrepeateduntilallpatternsarelearnt.TheperformanceofDynamicSelf-OrganizingMapisdemonstratedthrough recognitionofhandwrittencharacters.Thetime-dependentselectivecompetitionisintroducedintheSelf-OrganizingMapswiththehelpofgatedneurons.Thegateinputoftheneurondecidesitsoutput.Theoutputisthedistancemeasuredwhenthegateinputisnon-zeroandtheoutputiszerootherwise.Agatedneuronclassifieris Illdesignedusingsuchgatedneurons.Theperformanceofthegatedneuronclassifierisexplainedwithrecognitionofhandwrittencharacters.The directionalfeaturesoftheinputpatternsareextractedusingKirschmasks.Thesefeaturesarefedtotheinputatdistincttimeintervals.Thenetworkrecordsthewinninginstanceofeachneuronofvarioustimeintervalsinaregister.Eachoftheseinstancesisconnectedtotheoutputclassnodes.The strengthoftheseconnectionsarebasedonthestrengthofbelief/disbeliefoftheindividualnetwork.Thelabeloftheclassnodewithmaximumoutput denotestheclassofthetestsample.Thepatternismisclassified/rejectedwhenmorethanoneoutputneuronproducesthesamemaximumvalueorwhentheoutput ofallneuronsiszero.AFuzzyMultilayerNeuralNetworkisproposedalongwithitssupervisedlearningalgorithm.ThenetworkisdevisedwithfourlayersofFuzzyNeurons.Theinputsarefirstfuzzified.Thenetworkremembersthe'minimumandmaximumvaluesinalldimensionsofaclassofinputsascomersofann-dimensionalhyperbox.Whenadditionalinputsofsameclassesarepresentedthecorrespondinghyperboxissuitablyexpandedtoincludethenewpatternsalso.Thisprocessmaycauseahyperboxofoneclass tooverlapwiththatofotherclasses.Inthatcasetheyarecontractedtominimizetheoverlap.Duringtesting,thedegreetowhichthepatterniscontainedinsidetheboxindicatesthemembershipvalue.Theboxwith maximummembershipvaluelabelsthepattern. IVFinally,aGeneticAlgorithmbasedFeatureextractionschemeis.proposedtoextractuniquefeaturesoftheclassesandinitialpopulationissetwithrandomfeatures.Afeasibilitycheckisperformedtofindwhetheralltheserandomfeaturesarecontainedwithinthepattern.Thequalityofthe featuresisevaluatedbyitsinformationcontent.Theprobabilityofapatternbelongingtoaclassandnotbelongingtootherclassesisusedtomeasuretheinformationcontentofthefeature.This usestheapproximation ofBaye’srule.Thepixelsumimagesofasubsetofinputpatternsareobtainedforevery class.Afeaturedetectorislocatedinthepatternandcomparedwiththedigit image.Thegeneticoperatorsareappliedtotheindividualstogetbetterqualityfeaturesinsuccessivegenerations.Thismethodoffeatureextractionprovidestheadvantagesofdimensionalityreduction.Anapplicationpackageforrecognitionofhandwrittenandmachine-printedsamplesusingtheproposednetworkmodelsisdevelopedandnamed as“Rekogonizee”.ThisisdevelopedusingVisualC++withauser-friendly•menubasedinterface.Ithasoptionsforscanningtheinputpatterns,testing andtrainingthenetwork.Ithasgotfeaturestoextractthedirectionalfeatures fromtheinputandtrainthenetwork.HelpforvariousoptionsareprovidedthroughHTMLfiles.Thispackagecanbeusedeffectivelyforrecognitionofhandwrittenandmachineprintednumeralsandalphabets.
URI: http://localhost:8080/xmlui/handle/123456789/624
Appears in Collections:Computer Science & Engineering

Files in This Item:
File Description SizeFormat 
abstract 1.pdfABSTRACT138.96 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.