Skip navigation

Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/624
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChitra, A-
dc.contributor.authorSivanandam, S N-
dc.date.accessioned2022-05-12T12:56:14Z-
dc.date.available2022-05-12T12:56:14Z-
dc.date.issued1998-10-31-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/624-
dc.description.abstractPatternrecognitiontechniquesareamongtheimportanttoolsusedinthefieldofmachineintelligence.NeuralNetworksisacomputational paradigminspiredbyhuman’srichestsense-visionandperception.Pattern recognitionistheprincipalactivityinallrealtimeapplications.Decision-makingprocessesofhumanbeingarerelatedtotherecognitionofpatterns.Inthisthesiswork,neuralnetworkclassifiersaredesignedforpatternrecognitionapplications.Thetaskofrecognitionofhandwrittencharactersischosenasan applicationdomainfortestingthestrengthsandweaknessesoftheproposedNeuralNetworkClassifiers.TheconventionalBackpropagationalgorithmfortrainingFeedforwardNeuralNetworksismodifiedwithanobjectiveofquicktraining.Adaptive Backpropagationalgorithm,whichdynamicallyadaptsthelearningconstantswiththeadaptationcyclesandtheerrorisproposed.Theerrorisfoundtodecreasefasterthaninconventionalalgorithms.Theperformanceofthe algorithmisprovedwiththeclassificationofIrisdatasetandrecognitionofhandwrittencharacters.Thenetworksizeplaysamajorroleinlearningand generalization.AdaptiveGeneticAlgorithmsareusedtodeterminetheoptimumsizeofthenetwork.Theredundantconnectionsthatcontributelittle ornothingareremovedbasedonthesensitivityoftheedgestotheerror. 11TheproblemsolvingcapabilityofaNeuralNetworkcanbeincreased bythecombinationofmultiplenetworks.Themultiplenetworksarepowerfulsolutionstorecognitionproblemsbecausetheymaketheindividualnetworks tolearnindependentlytheinputfromdifferentpointofview.Therecognition accuracyofsuchsystemsdependsnotonlyonthepredictionabilityofthe individualnetworksbutalsoonthewayinwhichtheiroutputsarecombined.AFuzzycombinerisdesigned toderiveacollectivedecisionfrom theoutputs oftheindividualnetworks.Thishasenhancedtheoverallrecognitionrateofthesystem.ADynamicself-organizingnetworkforpatternrecognition applicationsisproposed.Itdynamicallycreatesneuronsintheoutputlayerandbuildsupthenetwork.Neuronsarecreatedwheneveranewcategoryofpatternsispresented.ThewinnerisdeterminedbasedonminimumEuclidean distanceanditsweightsareupdatedaccordingly.Theneuronthatwinsfor multipleclassesaresplitinsuchawaythateachneuronrepresentsauniqueclass.Thisadaptiveprocessisrepeateduntilallpatternsarelearnt.TheperformanceofDynamicSelf-OrganizingMapisdemonstratedthrough recognitionofhandwrittencharacters.Thetime-dependentselectivecompetitionisintroducedintheSelf-OrganizingMapswiththehelpofgatedneurons.Thegateinputoftheneurondecidesitsoutput.Theoutputisthedistancemeasuredwhenthegateinputisnon-zeroandtheoutputiszerootherwise.Agatedneuronclassifieris Illdesignedusingsuchgatedneurons.Theperformanceofthegatedneuronclassifierisexplainedwithrecognitionofhandwrittencharacters.The directionalfeaturesoftheinputpatternsareextractedusingKirschmasks.Thesefeaturesarefedtotheinputatdistincttimeintervals.Thenetworkrecordsthewinninginstanceofeachneuronofvarioustimeintervalsinaregister.Eachoftheseinstancesisconnectedtotheoutputclassnodes.The strengthoftheseconnectionsarebasedonthestrengthofbelief/disbeliefoftheindividualnetwork.Thelabeloftheclassnodewithmaximumoutput denotestheclassofthetestsample.Thepatternismisclassified/rejectedwhenmorethanoneoutputneuronproducesthesamemaximumvalueorwhentheoutput ofallneuronsiszero.AFuzzyMultilayerNeuralNetworkisproposedalongwithitssupervisedlearningalgorithm.ThenetworkisdevisedwithfourlayersofFuzzyNeurons.Theinputsarefirstfuzzified.Thenetworkremembersthe'minimumandmaximumvaluesinalldimensionsofaclassofinputsascomersofann-dimensionalhyperbox.Whenadditionalinputsofsameclassesarepresentedthecorrespondinghyperboxissuitablyexpandedtoincludethenewpatternsalso.Thisprocessmaycauseahyperboxofoneclass tooverlapwiththatofotherclasses.Inthatcasetheyarecontractedtominimizetheoverlap.Duringtesting,thedegreetowhichthepatterniscontainedinsidetheboxindicatesthemembershipvalue.Theboxwith maximummembershipvaluelabelsthepattern. IVFinally,aGeneticAlgorithmbasedFeatureextractionschemeis.proposedtoextractuniquefeaturesoftheclassesandinitialpopulationissetwithrandomfeatures.Afeasibilitycheckisperformedtofindwhetheralltheserandomfeaturesarecontainedwithinthepattern.Thequalityofthe featuresisevaluatedbyitsinformationcontent.Theprobabilityofapatternbelongingtoaclassandnotbelongingtootherclassesisusedtomeasuretheinformationcontentofthefeature.This usestheapproximation ofBaye’srule.Thepixelsumimagesofasubsetofinputpatternsareobtainedforevery class.Afeaturedetectorislocatedinthepatternandcomparedwiththedigit image.Thegeneticoperatorsareappliedtotheindividualstogetbetterqualityfeaturesinsuccessivegenerations.Thismethodoffeatureextractionprovidestheadvantagesofdimensionalityreduction.Anapplicationpackageforrecognitionofhandwrittenandmachine-printedsamplesusingtheproposednetworkmodelsisdevelopedandnamed as“Rekogonizee”.ThisisdevelopedusingVisualC++withauser-friendly•menubasedinterface.Ithasoptionsforscanningtheinputpatterns,testing andtrainingthenetwork.Ithasgotfeaturestoextractthedirectionalfeatures fromtheinputandtrainthenetwork.HelpforvariousoptionsareprovidedthroughHTMLfiles.Thispackagecanbeusedeffectivelyforrecognitionofhandwrittenandmachineprintednumeralsandalphabets.en_US
dc.language.isoenen_US
dc.publisherAnna Universityen_US
dc.subjectNeural Networken_US
dc.subjectClassifiersen_US
dc.subjectPattern Recognitionen_US
dc.titleDesign of neural network classifiers for pattern recognition applicationsen_US
dc.typeThesisen_US
Appears in Collections:Computer Science & Engineering

Files in This Item:
File Description SizeFormat 
abstract 1.pdfABSTRACT138.96 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.