Skip navigation

Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/623
Title: Bitutor – Bayesian Intelligent Tutoring System
Other Titles: 31/08/2007
Authors: Yaser, Nouh
Nadarajan, R
Keywords: Tutoring
Demonstration
Literature
Survey
Cognitivism
Issue Date: 31-Aug-2007
Publisher: Anna University
Abstract: Computershavebeenusedineducationsince1960.Thepurposeofusingcomputersinassistinginstructionistohelpstudentslearnmoreefficiently.Untilrecently,thecomputerizedtutoringresearchhasbeenfocusedonstudentmodeling.Decisionmakingundertheenvironmentofuncertaintyhasalsobeenanareaoffocus oftheseresearchers.Inliterature,thestudentmodelhasbeenclassifiedbasedonvariousfactors.Literaturesurveyrevealsthattheconstructionofstudentmodelcanbebroadlyclassifiedintostereotypes,overlay,andextendedoverlay.Diagnosisofstudent'smisconceptionsisgenerallythroughmodeltracingorconstraint-basedmodeling.AgeneralmethodologyforbuildinganIntelligentTutoringSystemisproposedanddemonstrated.ThemethodologyadvocatesbuildinganadaptiveandgeneralizedBayesiannetworkstudentmodel.TherandomvariablesofthisBayesiannetworkdenotethestochasticinformationassociatedwiththemasterystatesfortheknowledgenodeofthedomainknowledge.Inaneducationalenvironment,agoodstudentmodelmustincludeallthefeaturesofthestudent’sknowledgeandpreferencesrelatedtohislearningandperformance.Thisinformationisusedtoadaptthesystemtothestudent.Assessmentisanecessarypartoftutoring.Anumberofdecisionsneedtobetakenaboutstudents’knowledgemasterywhiletutoring.Eachdecisiontakenbythetutorforremediationisbasedonthecurrentinformationinthestudentmodel.Inthisresearch,decisiontheoreticpedagogicalactionselectionstrategyisusedformakingdecisionsunderuncertainty.Forassessingtheoverallprogressofthelearners’domaincompetence,thefocusofassessmentshouldbeontheacquisitionofskillsintheapplicationoffactsindifferentcontextualandnon-contextualscenariosandemphasisshouldbemoreonthecognitiveskills.Thediagnosticcapabilityofthestudentmodelmustbeextendedtoincludex theselectionofitemstomatchthestudent'smasterystate.Thismakesthesystemadaptiveandthetestitemschallengingtothestudents.ProvidingadaptivefeedbacktothestudentswhenthestudentneedsfeedbackorhelpfromthetutorisalsoaprominentprobleminIntelligentTutoringSystem.Thetutoringstrategycommonlyusedbytheteachersneedstobeformulated.Tutoringstrategyisasequenceofoptimalactionstobetakenbythetutor dependingonthestudent'smastery.Thisstrategyispersonalizedtothestudentandthissequenceofactionsisabletodirectthestudent'slearninginthemosteffectiveandefficient manner.ForasuccessfulIntelligentTutoringSystem,therearethreekeyfactorsidentified:(i)thegenerationofacognitivemodeltofacilitateitscommunicationtostudent;(ii)studentsmustbeprotectedfromthepotentiallyhighcostoferrorsbyminimizinglearningtime;and(iii)theabilitytomonitorstudent'sunderstandingoftheconcepts.OnesuchtutoringsystemdevelopedtoaddressthesekeyfactorsisBiTutor(BayesianIntelligentTutoringSystem).BiTutorattemptstobuildamodelofthestudent,andusethatmodelinconjunctionwithknowledgeaboutthedomainofinstructionandinstructionalstrategiestomodifytheorderofpresentationofmaterial,selectionofitemandfeedback,andstyleorfinteractionwiththestudent.BiTutorcanbeusedtoteachanycomputersciencecourses.TheevaluationshowsthatBiTutorisabletogeneratethetutoringstrategyinpolynomialtime.Finally,thisthesissuggestssomeareasofpossiblefuturework,whichmayleadtoimprovementsinIntelligentTutoringSystem.xi
URI: http://localhost:8080/xmlui/handle/123456789/623
Appears in Collections:Computer Applications

Files in This Item:
File Description SizeFormat 
Abstract 6.pdfABSTRACT69.5 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.