Skip navigation

Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/623
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYaser, Nouh-
dc.contributor.authorNadarajan, R-
dc.date.accessioned2022-05-12T12:36:16Z-
dc.date.available2022-05-12T12:36:16Z-
dc.date.issued2007-08-31-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/623-
dc.description.abstractComputershavebeenusedineducationsince1960.Thepurposeofusingcomputersinassistinginstructionistohelpstudentslearnmoreefficiently.Untilrecently,thecomputerizedtutoringresearchhasbeenfocusedonstudentmodeling.Decisionmakingundertheenvironmentofuncertaintyhasalsobeenanareaoffocus oftheseresearchers.Inliterature,thestudentmodelhasbeenclassifiedbasedonvariousfactors.Literaturesurveyrevealsthattheconstructionofstudentmodelcanbebroadlyclassifiedintostereotypes,overlay,andextendedoverlay.Diagnosisofstudent'smisconceptionsisgenerallythroughmodeltracingorconstraint-basedmodeling.AgeneralmethodologyforbuildinganIntelligentTutoringSystemisproposedanddemonstrated.ThemethodologyadvocatesbuildinganadaptiveandgeneralizedBayesiannetworkstudentmodel.TherandomvariablesofthisBayesiannetworkdenotethestochasticinformationassociatedwiththemasterystatesfortheknowledgenodeofthedomainknowledge.Inaneducationalenvironment,agoodstudentmodelmustincludeallthefeaturesofthestudent’sknowledgeandpreferencesrelatedtohislearningandperformance.Thisinformationisusedtoadaptthesystemtothestudent.Assessmentisanecessarypartoftutoring.Anumberofdecisionsneedtobetakenaboutstudents’knowledgemasterywhiletutoring.Eachdecisiontakenbythetutorforremediationisbasedonthecurrentinformationinthestudentmodel.Inthisresearch,decisiontheoreticpedagogicalactionselectionstrategyisusedformakingdecisionsunderuncertainty.Forassessingtheoverallprogressofthelearners’domaincompetence,thefocusofassessmentshouldbeontheacquisitionofskillsintheapplicationoffactsindifferentcontextualandnon-contextualscenariosandemphasisshouldbemoreonthecognitiveskills.Thediagnosticcapabilityofthestudentmodelmustbeextendedtoincludex theselectionofitemstomatchthestudent'smasterystate.Thismakesthesystemadaptiveandthetestitemschallengingtothestudents.ProvidingadaptivefeedbacktothestudentswhenthestudentneedsfeedbackorhelpfromthetutorisalsoaprominentprobleminIntelligentTutoringSystem.Thetutoringstrategycommonlyusedbytheteachersneedstobeformulated.Tutoringstrategyisasequenceofoptimalactionstobetakenbythetutor dependingonthestudent'smastery.Thisstrategyispersonalizedtothestudentandthissequenceofactionsisabletodirectthestudent'slearninginthemosteffectiveandefficient manner.ForasuccessfulIntelligentTutoringSystem,therearethreekeyfactorsidentified:(i)thegenerationofacognitivemodeltofacilitateitscommunicationtostudent;(ii)studentsmustbeprotectedfromthepotentiallyhighcostoferrorsbyminimizinglearningtime;and(iii)theabilitytomonitorstudent'sunderstandingoftheconcepts.OnesuchtutoringsystemdevelopedtoaddressthesekeyfactorsisBiTutor(BayesianIntelligentTutoringSystem).BiTutorattemptstobuildamodelofthestudent,andusethatmodelinconjunctionwithknowledgeaboutthedomainofinstructionandinstructionalstrategiestomodifytheorderofpresentationofmaterial,selectionofitemandfeedback,andstyleorfinteractionwiththestudent.BiTutorcanbeusedtoteachanycomputersciencecourses.TheevaluationshowsthatBiTutorisabletogeneratethetutoringstrategyinpolynomialtime.Finally,thisthesissuggestssomeareasofpossiblefuturework,whichmayleadtoimprovementsinIntelligentTutoringSystem.xien_US
dc.language.isoenen_US
dc.publisherAnna Universityen_US
dc.subjectTutoringen_US
dc.subjectDemonstrationen_US
dc.subjectLiteratureen_US
dc.subjectSurveyen_US
dc.subjectCognitivismen_US
dc.titleBitutor – Bayesian Intelligent Tutoring Systemen_US
dc.title.alternative31/08/2007en_US
dc.typeThesisen_US
Appears in Collections:Computer Applications

Files in This Item:
File Description SizeFormat 
Abstract 6.pdfABSTRACT69.5 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.