Skip navigation

Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/585
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGunaseelan, D-
dc.contributor.authorNadarajan, R-
dc.date.accessioned2022-05-11T07:30:44Z-
dc.date.available2022-05-11T07:30:44Z-
dc.date.issued2002-06-30-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/585-
dc.description.abstractDataminingisanemergingfieldinthedatabasetechnology.Thegoalofdataminingisknowledgediscovery,thatis,toexcavateinformationfromhistoricalorganizationaldatabasesthatcanbeusedtoguidebusinessstrategiesanddecisionmaking.Inthisdissertation,fastandefficientalgorithmsformininggeneralizedassociationrulesandsequentialpatternsinmassivedatabasesarepresented.Anassociationrule,forexample,couldbe“98%ofthecustomerswhobuybreadandbutteralsobuyjam”.Theproblemistofindoutallsuchruleswhosefrequencyisgreaterthansomeuser-definedminimumsupport.Thisthesisdealswithalgorithmicandsystemsaspectsofscalabledataminingalgorithmsappliedtomassivedatabases.Thealgorithmicaspectsfocusonthedesignofefficientandscalablealgorithmsfortwo-keyrulediscoverytechniques-generalizedassociationrulesandgeneralizedsequentialpatterns.Thesystemsaspectsdealwiththescalableimplementationofthesemethodsonsequentialmachines.Twoincrementalupdatedtechniquesformininggeneralizedassociationrulesandsequentialpatternstogeneraterulesandpatternsinmassivedatasetsarepresented.Thefirstoneisthedatabase,whichisfixedwithchangingminimumsupport.Thesecondoneisthegivenoriginaldatabase,whennewincrementdb(transactionaldatabase)isaddedtotheoriginaldatabaseDBwithfixedminimumsupportandminimumconfidence. Usingpartitionmethodassociationrulesandsequentialpatternshavebeengenerated.Themajoradvantageofthepartitionmethodisscanningthedatabaseexactlytwotimestocomputethelargeitemsetsbymeansofconstructingatransactionlistforeachlargeitemset.Insequentialpattern,largemaximalsequencesaregeneratedusingparallelpartitionmethod.Thespeed-upandsize-uppropertiesshowthattheproposedparallelpartitionmethodisbetterthansequentialpartitionmethod.Themethodofpatterndecompositioncanavoidthecostlyprocessofcandidatesetgenerationandsaveagreatamountofcomputingtimewithreduceddatabasesize.TheproblemofmininggeneralizedassociationrulesandsequentialpatternsusingTIDmethodhasbeenanalyzed.Byusingthismethod,thecostofexecutiontimehasbeenreducedandlinearlyscalable.Anothermostimportantproblemofmininggeneralizedassociationrulesinthedistributedenvironmenthasalsobeenpresentedhere.ThecomputingtimeofthefastdistributedalgorithmisintheO(n),whereastheparallelbasedalgorithmformininggeneralizedassociationruleisintheO(n2).Hence,theproposedfast-distributedalgorithmismorereliablethanthepreviousparallelandsequentialalgorithm.Extensiveexperimentshavebeenconductedforsolvingtheabovetwoproblems(generalizedassociationrulesandgeneralizedsequentialpatterns),showingimmenseimprovementoverthepreviousapproaches,withlinearscalabilityindatabasesize.en_US
dc.language.isoenen_US
dc.publisherAnna Universityen_US
dc.subjectFasten_US
dc.subjectAlgorithmsen_US
dc.subjectMassiveen_US
dc.subjectDatabasesen_US
dc.subjectSequentialen_US
dc.titleFast Algorithms for Mining Generalized Association Rules and Sequential Patterns in Massive Databasesen_US
dc.typeThesisen_US
Appears in Collections:Computer Applications

Files in This Item:
File Description SizeFormat 
abstract 2.pdfABSTRACT50.58 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.