
V

ABSTRACT

Distributed Object Systems provide an excellent support for 

evolutionary development of software for distributed applications through 

software reuse. Request brokers like Common Object Broker Architecture 

(CORBA) shield the application developers from low-level, tedious and error 

prone platform details. They provide platform, language, network, hardware, 

protocol and object location transparency by including an abstraction layer 

between the application programs and the networking protocols. Java Remote 

Method Invocation (RMI) is language dependent and Distributed Component 

Object Model (DCOM) is platform dependent. But CORBA is transparent to 

programming language and platform.

CORBA uses General Interoperable Protocol (GIOP) as its 

communication protocol. It fits into the application, presentation and session 

layers in the Open Systems Interconnection (OSI) model. Presentation 

conversion deals with the conversion of data from local machine 

representation to a common network format. This process of marshalling is 

carried out using static stubs generated by the Interface Definition Language 

(IDL) compiler or generic dynamic stubs. The stub code generated from the 

IDL takes care of marshalling the requests transparently to the user. Major 

limitations of core CORBA include lack of selective inheritance, creation/ 

destruction of the objects by the client and inefficient marshalling, align and 

check, buffering and data copying procedures. Also CORBA lacks support for 

generation of time-efficient and compact stub code. Other inefficiencies in 

CORBA include

The major objective of this thesis is to study, analyse and propose 

methods to enhance the performance of stub code. The research work is 

focused on the following issues:

• Enhancements on CORBA standard:

1. A method to achieve selective multiple inheritance in CORBA statically.



VI

Selective multiple inheritance cannot be directly implemented in 
CORBA, because function redefinition is not allowed in derived interface. A 

method using conditional interfaces to implement selective multiple 
inheritance in CORBA is proposed. This uses a container class derived from 

the base interface based on the condition.

2. A method for creation and destruction of CORBA objects using a base 
interface.

Deactivation of the CORBA object occurs when the server 
terminates. This leads to under-utilization of resources. Hence a base 
interface with operations for reference counting, instantiation and 
destruction of CORBA objects is implemented.

• Identification of the common sources of overhead in marshalling in

CORBA-based applications.

• Improvements in the efficiency of marshalling using the following

approaches:
1. Incorporating changes in the transmission medium.
2. Introducing new encoding rules to take care of reduction of size of the 

data passed in the network and the marshalling time.
3. Improving the security in link level communication of the marshaled 

data.
4. Optimised encode/decode software to generate time-efficient and 

compact encoding/decoding marshalling routines.

Common sources of overhead in marshalling in CORBA-based 

applications have been identified. This includes inefficient align and check, 

multiplexing and data copying algorithms which reduces the speed of Internet 

Interoperable Protocol (HOP), presence of extra padding bytes in Common 
Data Representation (CDR) for alignment and lack of time-efficient and 
compact stub code. Based on this study, changes were proposed in the 
transmission medium, encoding format and encoding procedures in CORBA.



Vll

HOP is the transmission medium for CORBA based applications. 

Though it brings about interoperability, it is slow. Hence changes in the 

transmission medium to improve the performance of the stub code have been 
proposed. To achieve this, componentized IDL compiler is designed. It has 

three phases - front end, presentation generator and back end. The back end 
of the compiler generates stubs and skeletons for a particular transmission 

mechanism and message format. Conventional CORBA stubs use TCP/IP 

sockets over HOP. Since it is slow, modules are incorporated in the back end 
to produce stubs with faster I PC mechanisms like shared memory, multiple 
shared memory segments, threading multiple shared memory segments, 
sockets over TCP/IP and multiple sockets.

The componentized design of the IDL compiler facilitates the usage of 
multiple IDLs, back ends and target languages. Using this model, 

interoperability between CORBA and RMI using RMI/IIOP is achieved. A 
static bridge between CORBA and COM has been implemented using this 

model.

Encoding mechanisms also influence the efficiency of presentation 

code. CORBA uses Common Data Representation (CDR) mechanism to 
encode data. Since CDR uses excessive alignment at the word boundaries, 

new encoding rules to generate efficient stub code have been proposed. This 
includes the following:

1) Representation of boolean data in bit format in an array.

2) Removing the alignment at the natural word boundaries to eliminate 

the extra padding bytes.
3) Correct allocation of the send and receive buffer space depending 

upon the size of the data being transmitted.
4) Reordering of parameters in the descending order of size to reduce the 

number of padding bits in CDR.
5) A novel link level encryption scheme to bring about security in CORBA 

based applications has been proposed. Encryption is performed by 

choosing a set of functions from a domain of functions based on



vin

validation. The validation process is done by mapping every bit of the 

plain text block to a base string for a match.

Faster and compact encoding procedures by optimizing the 

implementation of the encode/decode software have been proposed. The 

techniques used to implement presentation conversion routines can be 

interpreted and procedure driven. Interpreted routines result in smaller code, 

while procedure-driven routines execute faster. So the later can be used for 

more frequently occurring types. An optimizer implemented in the presentation 

generation stage of the IDL compiler generates a hybrid stub code. It 

achieves a balance between code size and execution speed of the stub code. 

The optimizer uses single and multiple objective genetic algorithms. The 

suitability of Multiple Objective Cross-over Mutation, Self Reproduction 

Mutation (MOCM-SRM) and Genetic Local Search (GLS) methods have been 

studied. Parallel implementation of MOCM-SRM method has been identified 

to be suitable. The performance of the hybrid stub code generated using this 

approach has been investigated. Further, CORBA treats Dll and Sll as two 

different invocation mechanisms. Sll stubs like compiled, interpreted and 

inlined compilation differ in their code size and execution speed. So the 

proposed method is extended to generate a hybridized stub code to strike a 

balance between these four invocation mechanisms.

Since presentation conversion is an expensive part of network 

communication, the following methods are implemented to improve the 

efficiency of presentation layer conversion:

1. Efficient IPC mechanisms like shared memory, multiple segments of 

shared memory, threaded shared memory segments and multiple 

sockets were implemented

2. Efficient hybrid stub code was generated by optimizing the 

encoder/decoder software considering static and dynamic frequency of 

the data types.

3. Changes were implemented in the encoding mechanism of CORBA. 

The following approaches were used to improve the efficiency of 

encoding in CORBA:



IX

• Representation of the boolean arrays in bit format.

• Removal of the extra padding bits in CDR.

• Reordering the parameters in the descending order of their size to 

minimize the number of padding bytes.

• Implementing secure communication between CORBA objects at 
the link level using a novel symmetric key encryption method.


