
INVESTIGATIONS ON EXPLORING THE

EFFICACY OF DISTRIBUTED PAIR

PROGRAMMING IN ACADEMIC

ENVIRONMENT

A THESIS

Submitted by

 MOHANRAJ N

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE AND HUMANITIES

ANNA UNIVERSITY

CHENNAI 600 025

MARCH 2016

ii

ANNA UNIVERSITY

CHENNAI 600 025

CERTIFICATE

The research work embodied in the present Thesis entitled

“INVESTIGATIONS ON EXPLORING THE EFFICACY OF

DISTRIBUTED PAIR PROGRAMMING IN ACADEMIC

ENVIRONMENT” has been carried out in the Department of Computer

Applications, PSG College of Technology, Coimbatore. The work reported

herein is original and does not form part of any other thesis or dissertation on

the basis of which a degree or award was conferred on an earlier occasion or

to any other scholar.

I understand the University’s policy on plagiarism and declare that the thesis

and publications are my own work, except where specifically acknowledged

and has not been copied from other sources or been previously submitted for

award or assessment.

MOHANRAJ N Dr. A. SANKAR

RESEARCH SCHOLAR SUPERVISOR

 Associate Professor

 Department of Computer Applications

 PSG College of Technology

 Coimbatore-641 004.

iii

ABSTRACT

 In a software development organization, where the traditional way

of developing a software program is adopted, a programmer will use a

computer terminal for writing software programs, which are necessary for a

project. In this approach, the programmer has to consult a systems analyst for

implementing the system requirements in his/her software program. This

process is time consuming, may lead to miscommunication and thus results in

low user satisfaction and low productivity. Also such traditional approaches

involve large amounts of documentation like requirements specifications,

architecture document, design document and test plans etc., instead of giving

out useful functionality to the end user. Due to such user unfriendly

approaches sometimes projects are abandoned even before it is deployed.

 The solution for such type of problems like project abandonment

before deployment, low user satisfaction and low productivity is provided by

using Agile software development methods like Pair Programming,

Distributed Pair Programming and Extreme Programming. When a single

programmer uses the system, many tools are not required for synchronizing

the activities, but it is required in the case of Pair Programming or Extreme

Programming. The tools such as to replicate a user’s desktop onto multiple

computers in particular two in the case of pair programming are required. All

input and output methods should be shared between multiple computers and

the application to be developed should also be deployed on both or multiple

computers. It should be noticed that direct communication is better than a

detailed documentation. However, documentation is also important in the

software development. In pair programming, the limitations are scalability as

well as co-located pairs in the same physical location. But, due to the

advances of internet and social networking, one can foresee an approach

iv

which uses the advantages of such technologies. Hence, there is a need to

address distributed pair programming where there is a possibility of

scalability as well as the users need not be co-located in the same physical

location.

 Distributed pair programming is a practice where two pairs are

geographically separated and are working for the same problem. High quality

products are produced more rapidly. Remote pair programming, also known

as virtual pair programming or distributed pair programming, is a pair

programming in which the two programmers are in different locations,

working via a collaborative real-time editor, shared desktop or a remote pair

programming IDE plugin. But remote pairing has difficulties like extra delays

for coordination, loss of verbal communication resulting in confusion and ego

conflicts. Software tools may be necessary for screen sharing and for audio

chatting through the use of headsets which will be of very useful in

distributed pair programming.

 In the first part, the effectiveness of the distributed pair

programming was analysed using an experimental technique in an academia

environment for laboratory courses. This experiment demonstrates that

distributed pair programming could be very effective in promoting a student’s

ability to learn programming concepts in laboratory courses in a faster and

more efficient way when compared to solo programming. This experiment

was conducted in the computer laboratories in an engineering college. The

solutions given by pairs in distributed environment are analysed and shown

using various charts. The results provide support for distributed pair

programming in the software engineering curriculum of an academia. The

results proved that distributed pair programming is better than compared with

solo programming in helping a student to learn the programming concepts in

the laboratory, easily and efficiently.

v

 Traditionally, pairs are formed based on individual preferences or

administrative authority’s decision to support organization requirements as

there are no standard procedures for forming pairs. A performance will be

highly productive, if they are more compatible with each other. Incompatible

pairs have less understanding and have communication gap between them.

This leads to reduced performance, demotivation and disengagement from

work. Then, there is a need for finding compatible pairs. In the second part, a

novel method is proposed to form student pairs for programming laboratory

courses based on weighted graph matching technique incorporating necessary

psychological factors for compatibility between pairs. The concept of graph

matching is used in many industrial applications. For instance, the assignment

of individual workers to tasks, jobs to processors, etc can be modelled using

graph matching. The experimental results demonstrate that the proposed

method yields better performance of the pairs in the task assigned to them.

 Laboratory courses constitute one of the core competencies that

graduates from computer science discipline are expected to possess. Research

has suggested that the lack of a formalised structure for laboratory courses

may be one of the factors responsible for learners’ negative impressions of

E-learning. In order to motivate E-learners and present laboratory courses as

an easy and attractive challenge, pair programming was used as an effective

tool. In the third part, experiments were conducted to analyse whether pair

programming can enhance the E-learning system and thereby encourage the

E-learners by motivating their E-learning experience. The results show that

for the students having no programming background, they gain maximum

learning experience from the laboratory work. Most students reported a high

learning experience and satisfaction level when E-learning was employed

with pair programming.

vi

 In the fourth part, a pair recommender system is proposed based on

association rule. Association rules are used in data mining to discover

interesting relations. In pair programming experiment, association rules are

used to discover pair compatibility. Pair compatibility based on previous

successful projects, skill levels, designation, personal interests are also

identified. Then association rules can be built and also they can be analysed

whether they are strongly based on threshold values. To generate strong

association rules Apriori algorithm was used. Experimental results show that

the proposed approach is better than solo programming and pair programming

based on weighted graph approach.

 The experiments conducted in the academia environment to

evaluate the performance of distributed pair programming proved that

distributed pair programming is a better approach than compared with solo

programming in improving the ability of student community to learn

computer programming without any difficulty and students were also

motivated during the distributed pair programming which improved the

quality of software products delivered by them. The experiments conducted

to find the pair compatibility found to be successful in forming better pairs to

produce a better quality software.

vii

ACKNOWLEDGEMENT

 I wish to record my deep sense of gratitude and profound thanks to

my research supervisor Dr. A. Sankar, Associate Professor, Department of

Computer Applications, PSG College of Technology, Coimbatore, for his

keen interest, inspiring guidance, constant encouragement with my work

during all stages, to bring this thesis into fruition.

 I would like to thank my Ph.D Doctoral committee members

Dr. P. Narayanasamy and Dr. S. Subramanian for their valuable comments

and suggestions.

 I wish to thank the Management and our Principal

Dr. R. Rudramoorthy, PSG College of Technology, Coimbatore for

allowing me to use all the facilities in the College without which the work

would not have been completed successfully. I would like to thank

Dr. R. Nadarajan, Professor & Head, Department of Applied Mathematics &

Computational Sciences and Dr. A. Chitra, Professor & Head, Department of

Computer Applications, PSG College of Technology for their valuable

support to complete this research work.

 I also thank the faculty and non-teaching staff members of the

Department of Computer Applications and Department of Applied Mathematics

& Computational Sciences, PSG College of Technology, Coimbatore, for their

valuable support throughout the course of my research work.

 Finally, I thank the Lord Almighty for giving me the knowledge

and strength to carry out this research work.

MOHANRAJ N

viii

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

ABSTRACT iii

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF ABBREVIATIONS xviii

1 INTRODUCTION 1

1.1 AGILE METHODOLOGY 1

1.2 EXTREME PROGRAMMING 2

1.3 XP PROCESS 3

1.4 XP VALUES 4

1.4.1 Communication 4

1.4.2 Simplicity 5

1.4.3 Feedback 5

1.4.4 Courage 6

1.4.5 Refactoring 6

1.5 EXTREME PROGRAMMING PRACTICES 7

1.5.1 Pair Programming 8

1.5.1.1 Remote Pair Programming 9

1.5.1.2 Advantages of Pair Programming 10

1.5.2 Test Driven Development 13

1.5.3 Continuous Integration 14

1.5.4 Simple Design 14

1.5.5 Coding Standards 14

1.5.6 Collective Code Ownership 15

ix

CHAPTER NO. TITLE PAGE NO.

1.6 OBJECTIVE OF THE DISSERTATION 15

1.7 THESIS ORGANIZATION 16

2 LITERATURE SURVEY 18

2.1 SOFTWARE DEVELOPMENT PRACTICE 18

2.2 AGILE PROGRAMMING ENVIRONMENTS 19

2.3 EXTREME PROGRAMMING ENVIRONMENTS 22

2.4 PAIR PROGRAMMING ENVIRONMENTS 24

2.5 DISTRIBUTED PAIR PROGRAMMING

ENVIRONMENTS 28

2.6 TOOLS FOR AGILE DEVELOPMENT PROCESS 35

2.7 CONCLUSION 36

3 ASSESSING EFFECTIVENESS OF

DISTRIBUTED PAIR PROGRAMMING

FOR LABORATORY COURSES 37

3.1 DISTRIBUTED PAIR PROGRAMMING 37

3.2 EXPERIMENTAL SETUP 38

3.3 RELATED WORK 39

3.3.1 Experiments conducted to assess DPP 40

3.4 INFERENCE FROM METRICS ANALYSIS

TO MEASURE THE EFFECTIVENESS OF DPP 46

3.5 INFERENCE FROM LINES OF

CODE ANALYSIS TO MEASURE THE

EFFECTIVENESS OF DPP 52

3.6 INFERENCE FROM DEFECT ANALYSIS TO

MEASURE THE EFFECTIVENESS OF DPP 53

3.7 CONCLUSION 55

x

CHAPTER NO. TITLE PAGE NO.

4 WEIGHTED GRAPH MATCHING APPROACH

FOR PAIR COMPATIBILITY IN PAIR

PROGRAMMING 56

4.1 INTRODUCTION 56

4.2 SIGNIFICANCE OF PAIR MATCHING 56

4.3 GRAPH MATCHING APPROACH 58

4.3.1 Edmonds' Blossom Algorithm 63

4.3.1.1 Augmenting paths 64

4.4 RELATED WORK 65

4.5 METHODOLOGY 67

4.6 EXPERIMENTS AND RESULTS 68

4.6.1 Self chosen pairs 69

4.6.2 Pairs chosen using weighted

graph matching without considering

skill level 71

4.6.3 Pairs chosen using weighted graph

matching considering skill level 74

4.7 RESULTS ANALYSIS AND DISCUSSION 78

4.8 PAIR PROGRAMMING QUESTIONNAIRE - A 81

4.9 PAIR PROGRAMMING QUESTIONNAIRE - B 86

4.10 CONCLUSION 87

5 ENCHANCING LEARNING EXPERIENCE OF

E-LEARNERS IN LABORATORY COURSES

USING PAIR PROGRAMMING 88

5.1 E-LEARNING 88

5.2 E-LEARNING IN LABORATORY COURSES 89

5.3 RELATED WORK 89

xi

CHAPTER NO. TITLE PAGE NO.

5.4 THE INTRICACIES OF LEARNING

LABORATORY COURSES IN E-LEARNING

ENVIRONMENT 91

5.4.1 Research Overview and Hypotheses 93

5.4.2 Methodology 94

5.4.3 Experimental Design 95

5.4.4 Experimental Procedure 95

5.4.5 Instruments and data collection 96

5.5 RESULTS AND DISCUSSION 97

5.5.1 Comparisons between time spent on

learning and academic performance 97

5.5.2 Comparisons between dropout rate and

failure rate 99

5.5.3 Analysis of the Satisfaction of students 101

5.6 CONCLUSION 107

6 PAIR RECOMMENDER SYSTEM : AN

ASSOCIATION RULE BASED APPROACH 109

6.1 INTRODUCTION 109

6.2 RELATED WORK 111

6.3 ASSOCIATION RULE MINING 112

6.3.1 Association Rule 112

6.3.2 Quality Measures 112

6.3.3 Support 113

6.3.4 Confidence 113

6.3.5 Lift 114

6.4 APRIORI ALGORITHM 115

6.4.1 Frequent item-set Generation 116

xii

CHAPTER NO. TITLE PAGE NO.

6.4.2 Apriori Principle 117

6.4.3 Frequent item-set generation of the

Apriori Algorithm 118

6.5 PAIR RECOMMENDATION BASED

ON ASSOCIATION RULE MINING 119

6.5.1 Programmer Transaction Database 120

6.5.2 Finding k-frequent item-set with

minimum support 121

6.5.3 Finding association rules 121

6.5.4 Finding strong association rules 121

6.6 EXAMPLE 122

6.7 EXPERIMENTAL RESULTS

AND DISCUSSION 127

6.8 CONCLUSION 133

7 CONCLUSION 134

7.1 SUMMARY OF THE THESIS 134

7.2 FUTURE WORK 136

REFERENCES 138

LIST OF PUBLICATIONS 146

xiii

LIST OF TABLES

TABLE NO. TITLE PAGE NO.

3.1 Questionnaire for analyzing the quality of DPP 44

3.2 Metrics for Data Analysis for DPP 45

4.1 Lines of Code and Time taken for Experiment 1 69

4.2 Lines of Code and Time taken for Experiment 2 73

4.3 Lines of Code and Time taken for Experiment 3 76

4.4 Answer Credits 85

5.1 Experimental Analysis 94

5.2 Mean, Standard Deviation (SD) and t test of the

scores for total time spent on E-learning, and

final assessment mark across the two academic

years

97

5.3 Overall failure rate and dropout rate across the

two academic years

100

5.4 Mean and Standard Deviation (SD) of Learner’s

opinions regarding learning experience

103

5.5 Two-way ANOVA for the learner’s satisfaction 104

6.1 Transaction database 114

6.2 An example Transaction database 120

6.3 Programmer Transaction database 122

6.4 Frequent 1-item-sets, L1 123

6.5 Candidate 2-item-sets, C2 123

6.6 Frequent 2-item-sets, L2 124

6.7 Candidate 3-item-sets, C3 124

xiv

6.8 Frequent 3-item-sets, L3 125

6.9 Candidate 2-item-sets, C4 125

6.10 Performance of Solo programmers Vs. Pair 130

6.11 Performance of Solo Programmers Vs. New

Pair

130

xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.

1.1 Pair Programming at Software Industries 10

1.2 Pair Programmers at their work in academia 13

2.1 Typical Pair Programming Environment 24

3.1 Screen shot of the software used for voice

chatting between the pairs

42

3.2 Screen shot of the software used for text

chatting between the pairs

43

3.3 Data analysis of 20 metrics for the feedback

“STRONGLY DISAGREE” from the students

47

3.4 Data analysis of 20 metrics for the feedback

“DISAGREE” from the students

48

3.5 Data analysis of 20 metrics for the feedback

“AGREE TO SOME EXTENT” from the

students

49

3.6 Data Analysis of 20 metrics for the feedback

“AGREE” from the students

50

3.7 Data analysis of 20 metrics for the feedback

“STRONGLY AGREE” from the students

51

3.8 Lines of Code Analysis for correct outputs 52

3.9 Lines of Code Analysis for wrong outputs 52

3.10 Time Analysis for wrong outputs 53

3.11 Time Analysis for correct outputs 54

4.1 Undirected graph and Direct graph 58

4.2 Complete graphs 59

xvi

FIGURE NO. TITLE PAGE NO.

4.3 Weighted graph 59

4.4 Bipartite graph 60

4.5 Complete bipartite graphs 61

4.6 Matching of a weighted complete graph 62

4.7 Match augmentation in Edmonds’ Blossom

Algorithm 64

4.8 Lines of Code Analysis with respect to

experiment 1 70

4.9 Time Analysis for the pairs with respect to

experiment 1

70

4.10 Lines of Code Analysis with respect to

experiment 2

73

4.11 Time Analysis for the pairs with respect to

experiment 2

74

4.12 Lines of Code Analysis with respect to

experiment 3

77

4.13 Time Analysis for the pairs with respect to

experiment 3

77

4.14 Average Lines of Code Analysis for all three

experiments

78

4.15 Time comparison Analysis for all three

experiments

78

4.16 Time Analysis for the pairs in each of the

experiments

80

5.1 Total number of participants in the

experiments

94

5.2 Time comparison Analysis on learning and

academic performance

99

xvii

FIGURE NO. TITLE PAGE NO.

5.3 Overall failure rate and dropout rate across the

two academic years

100

5.4 Survey results for UG students 102

5.5 Survey results for PG students 103

6.1 Item-set lattice structure for the set

I={a,b,c,d,e}

116

6.2 Apriori Principle based pruning 118

6.3 Apriori Algorithm to generate frequent item-

set

119

6.4 Finding of Strong Association Rules 119

6.5 Generation of Strong Association Rule 126

6.6 Lines of Code Analysis for the pairs 127

6.7 Time Analysis for the pairs 128

6.8 Lines of Code Analysis for the new pairs 128

6.9 Time Analysis for the new pairs 129

6.10 Lines of Code Analysis for solo programmers 129

6.11 Time Analysis for solo programmers 130

6.12 Grades obtained by pairs for package-1 131

6.13 Grades obtained by new pairs for package-2 132

6.14 Grades obtained by solo programmers 132

xviii

LIST OFABBREVIATIONS

ADD - Agile Dispersed Development

AHP - Analytic Hierarchy Process

ANOVA - ANalysis of VAriance

AO - Agile Outsourcing

ARM - Association Rule Mining

COLLECE - COLLaborative Edition, Compilation and Execution

COPPER - COllaborative Pair Programming EditoR

CRT - Cathode Ray Tube

CS - Computer Science

DAD - Distributed Agile Development

DPP - Distributed Pair Programming

DXP - Distributed Extreme Programming

EP - Extreme Programming

IDE - Integrated Development Environment

IT - Information Technology

LOC - Lines of Code

PG - Post Graduate

QA - Quality Assurance

TDD - Test Driven Development

UG - Under Graduate

VLE - Virtual Learning Environment

VNC - Virtual Networking Computing

XP - Extreme Programming

1

CHAPTER 1

INTRODUCTION

 Agile Methodology which is an emerging popular methodology in

the software industry as well as in the academia is the core concept of this

research work. Extreme Programming is an element of agile methodology and

pair programming is one the principles of Extreme Programming (XP) which

forms the basis for this research work.

1.1 AGILE METHODOLOGY

 Agile software development is a group of software development

methods in which requirements and solutions evolve through collaboration

between self-organizing and cross-functional teams. It promotes adaptive

planning, evolutionary development, early delivery, continuous improvement

and encourages rapid and flexible responses to change.

 The components of agile methodology are given below:

 Individuals and interactions: In agile software development,

self-organization and motivation are the important factors

which will improve the interaction between the pairs in the

pair programming environment. New solutions and innovative

ideas emerge when the pairs interact with each other. Flaws

in old solutions also come to life.

2

 Working software: Working software is the primary measure

of the progress in the software development process.

Demonstration of working software is considered as the best

means of communication between the customer and developer

to understand the customer requirements, instead of just

depending upon the documentation.

 Customer collaboration: As the requirements cannot be fully

collected at the beginning of the software development due to

various reasons, continuous customer and stakeholder

involvement are very important to collect complete

requirements of the customer.

 Responding to change: Agile methods are focused on quick

responses to change and continuous development. Building

a plan is useful and each of the agile methodologies contain

specific planning activities. They also contain mechanisms for

dealing with changing priorities.

 Kent Beck, Alistair Cockburn, Martin Fowler, Ron Jeffries and

Jim Highsmith (Jim Highsmith 2001) formed the Agile Alliance, a non-profit

organization that promotes software development according to the manifesto's

values and principles.

1.2 EXTREME PROGRAMMING

 The intent of Extreme Programming (XP) is to improve software

quality and responsiveness to changing customer requirements. This is done

by frequent releases in short development cycles (time boxing) and

checkpoints to adopt new customer requirements. According to Ron Jeffries,

“Extreme Programming is a discipline for software development, based on

3

values of simplicity, communication, feedback and courage” (Ron Jeffries et

al. 2000).

1.3 XP PROCESS

 XP encompasses a set of rules and practices that occur within the

context of four framework of activities: planning, design, coding and testing.

The methodology takes its name from the idea that the beneficial elements of

traditional Software Engineering practices are taken to ‘extreme’ levels, on

the theory if some is good more is better. Process begins with the creation of a

set of stories which are called as “user stories”.

 User stories describe required features and functionality for

software to be built. The customer assigns a value to the story based on

overall business value of the feature. Members of the XP team then assess

each story and assign a cost measured in development weeks, required for the

software to be built. New user stories can be written at anytime. If the user

story requires more than three development weeks, then the customer is

asked to split the user story into smaller size user stories and the assignment

of values and cost occurs again. Once a basic commitment is made for the

release, the XP team orders the stories that will be developed in one of these

ways mentioned below :

 All user stories will be implemented within two to three

weeks.

 The user stories with highest value will be moved up in the

schedule and implemented first.

 As the customer has rated each user story, based upon the business

value, the user stories which has highest business value will be assigned with

highest priority for implementation.

4

 The user stories with highest risk, will be moved up in the

schedule and implemented first.

 User stories, which are very critical for the project and which has

the highest risk factor, will be identified by the user and will be assigned with

highest priority for implementation.

 After the first release (Software increment), the XP team computes

the project velocity. Project velocity is the number of user stories

implemented during the first release. It is a measure of how much work is

getting done on your project. It is a very useful measure for planning the

iterations. Project velocity goes up by allowing developers to ask the

customers for another story when their work is completed early and no clean

up tasks remain.

1.4 XP VALUES

 The values which are emphasized by Extreme Programming

process are very vital for a successful software project. The values are

Communication, Simplicity, Feedback, Courage and Refactoring.

1.4.1 Communication

 Effective communication is needed between everyone involved in

the project like team members, managers and customers. XP insists on having

a real customer working directly with the project. Customer should be able to

represent the needs of the fellow users. Customer must be empowered to

answer questions and make decisions regarding feature priority, risks, and so

forth. They will take part in planning by writing and prioritizing user stories

and decide the release content. When the customers, work along with the

development team, the development team will get constant feedback from the

5

customers. The customers can also answer any questions asked by the

development team related with the user stories.

1.4.2 Simplicity

 Extreme programming encourages starting with the simplest

solution. Extra functionality can then be added later. XP approach, focuses on

designing and coding for the needs of today instead of those of tomorrow,

next week, or next month. This is an advantage, because we are not going to

invest our time in all possible future requirements that might change before

they become relevant. Coding and designing for uncertain future requirements

implies the risk of spending resources on something that might not be needed,

while perhaps delaying crucial features. Simplicity in design and coding will

improve the quality of communication. A simple design with very simple

code could be easily understood by most of the programmers in the

development team.

1.4.3 Feedback

 Kent Beck has quoted that "Optimism is an occupational hazard of

programming. Feedback is the treatment."

 Constant feedback is an imperative to make sure that the process is

done correctly and to make corrections as soon as possible if there is any

defect. Within extreme programming, feedback relates to three dimensions of

the system development and are mentioned below.

 Feedback from the system is obtained by testing the

programs through unit testing or by exercising periodic

integration tests. The number of errors encountered during the

unit testing process will reveal the quality of the code. The

6

programmers will have direct feedback from the state of the

system after implementing changes.

 Feedback from the customer is obtained by testing the

programs through acceptance testing. The functional tests are

conducted jointly by the customer and the tester. They will get

concrete feedback about the current state of their system. This

review is planned once in every two or three weeks so that the

customer can easily know whether his/her requirements are

implemented correctly.

 Feedback from the project team is obtained, when customers

come up with new requirements in the planning game and the

team directly gives an estimation of the time that it will take to

implement those requirements.

 These three dimensions in the feedback are very important to

improve the quality of the software product to be delivered.

1.4.4 Courage

 Courage is required for doing XP. Sometimes major refactoring of

the system has to be done. There is a need to make big decisions, support

them and follow those decisions.

1.4.5 Refactoring

 Refactoring is not changing the code by random hacking. It is a

disciplined, rigorous approach to improve our code gradually without

changing its external behavior.

7

Code for today and not for tomorrow: Customer requirements keep on

changing. So code should be developed focusing on current user requirements

and not on future needs.

Refactor as appropriate: Refactoring improves the design of software.

Refactoring makes the code easier to understand, even when the code review

is done. Refactoring helps to find the defects easily by giving a better

perspective on the code. Refactoring speeds up the process because the

defects are eliminated.

Be willing to throw code away: Whenever there is a change in the customer

requirement, there may be a necessity to change the design and as a result old

code must be thrown away. Programmer should have the courage to do this

and to do code refactoring.

1.5 EXTREME PROGRAMMING PRACTICES

 Extreme Programming (XP) is an agile software methodology to

implement software projects. The following practices are used in this

methodology.

 Pair Programming

 Test Driven Development

 Continuous Integration

 Coding Standards

 Collective Code Ownership

8

 The practices which are used in this methodology are explained in

detail.

1.5.1 Pair Programming

 Pair programming (sometimes referred to as peer programming) is

an agile software development technique in which two programmers work as

a pair together on one workstation. One, the driver, writes code while the

other, the observer, pointer or navigator, reviews each line of code as it is

typed in. The two programmers switch roles frequently. There is also

analysis, design, refactoring, testing and code review in addition to

programming. Sufficient space should be provided so that two persons can sit

comfortably at a single computer, see the computer, see the monitor and share

the keyboard and mouse effectively. One of the persons in the pair

programming exercise is called as the driver and other one who is going to

guide the driver is called as a navigator. The driver has the control of the

keyboard and mouse and he/she is involved actively in programming. The

partner watches, offers advice, makes suggestions, points out mistakes,

questions decisions and generally works as a back-seat driver keeping an eye

on the strategic goals while the driver concentrates on the tactical details.

Roles can change often. In Figure 1.1, pair programmers are involved in a

software development activity.

 The various activities that occur during pair programming process

are given below:

 Making design decisions

 Implementing code

 Reviewing code

 Testing code

9

 Refactoring code

 Communicating with the partner and indirectly with the other

team members too.

 Educating each other and again indirectly the whole team

 Dr. Laurie Williams, Department of Computer Science, North

Carolina State University has explained the concept of pair programming

(Williams 2002). In this approach, two programmers who are seated side-by-

side will be working and collaborating on the same design, algorithm, code or

test. One programmer, the driver, has control of the keyboard/mouse and

actively involved in the program development. The other programmer, the

observer, continuously observes the work of the driver to identify tactical

(syntactic, spelling, etc.) defects and also thinks strategically about the

direction of the work. On demand, the two programmers can brainstorm any

challenging problem. Because the two programmers periodically switch roles,

they work together and make equal contribution in the software development.

1.5.1.1 Remote Pair Programming

 Remote pair programming or distributed pair programming, is pair

programming in which the two programmers are seated in different locations,

working in a computer system for the same product. Communication is

established between the two programmers by means of software tools that

will enable audio and video chatting and for sharing the desktop. Remote

pairing may have difficulties that is not present in face-to-face pairing, like

extra delays for coordination among pairs, depending more on "heavyweight"

task-tracking tools instead of "lightweight" ones like index cards and loss of

verbal communication resulting in confusion and conflicts over such things as

who "has the keyboard".

10

(Source: https://en.wikipedia.org/wiki/Pair_programming)

Figure 1.1 Pair Programming at Software Industries

1.5.1.2 Advantages of pair programming

 Quality and productivity are improved by following the pair

programming process. The advantages of pair programming process are

given below:

 Economics

 It is much economical to use pair programming, because it reduces

the expenses by reducing the defects in the programs. Pairs spend about 15%

more time on programs than individuals. However, the resulting code has

about 15% fewer defects. Along with code development time, other factors

like field support costs and quality assurance also affect the expenses. IBM

11

reported spending about “$250 million repairing and reinstalling fixes to

30,000 customer-reported problems”. Pair programming significantly reduces

these expenses by reducing the defects in the programs (Alistair Cockburn &

Laurie Williams 2001).

 Design quality

 Design quality is improved to a large extent by adopting the pair

programming. A system with two programmers possesses greater potential for

the generation of more diversified solutions to problems for the following

three reasons:

i) The programmers bring different prior experiences to the task;

ii) They may access information relevant to the task in different

ways;

iii) They stand in different relationships to the problem by virtue

of their functional roles.

 In the attempt to share goals and plans, the programmers must

overtly negotiate a shared course of action when a conflict arises between

them. In doing so, they consider a larger number of ways of solving the

problem than a single programmer alone might do. This significantly

improves the design quality of the program as it reduces the chances of

selecting a poor method.

 Satisfaction

 Satisfaction is one of the motivating factors for the pair

programmers which results in quality and productivity. In an online survey of

pair programmers, 96% of them stated that they enjoyed their work more than

when they programmed alone. Additionally, 95% of the surveyed

12

programmers stated that they were more confident in their solutions when

they are involved in pair programming (Williams et al. 2003). A correlation

exists between satisfaction among programmers and their confidence in the

code building i.e. the pairs enjoy their work more because they are more

confident in it.

 Learning

 Knowledge is constantly shared between pair programmers, from

tips on programming language rules to overall design skills. In "promiscuous

pairing", each programmer communicates and works with all the other

programmers on the team rather than pairing only with one partner, which

causes knowledge of the system to spread throughout the whole team. Pair

programming allows the programmers to examine their partner's code and

provide feedback which is necessary to increase their own ability to develop

monitoring mechanisms for their own learning activities.

 Team-building and communication

 Pair programming allows team members to share problems and

solutions quickly making them less likely to have hidden agenda from each

other. This helps pair programmers to learn to communicate more easily. If

the pair can work together, then, they learn ways to communicate more easily

and they communicate more often. “This raises the communication

bandwidth and frequency within the project, increasing overall information

flow within the team” (Alistair Cockburn & Laurie Williams 2001).

 In Figure 1.2, one can see the pair programmers are involved in

various activities of software development in an academic institution.

13

Figure 1.2 Pair Programmers at their work in academia

1.5.2 Test Driven Development

 Test Driven Development (TDD) is a technique in which the test

cases are prepared before writing the code which is going to be tested. This

technique results in developing a code with less number of defects. Because

the test cases are prepared first, the code should be written in such a way that

it can be tested thoroughly. Preparing of test cases at the initial stage of code

development, encourages a programmer to write simple and single-purpose

method. Because the methods will be called from more than one environment,

they tend to be more independent of the environment.

 Test cases should run at a 100% pass rate in the production code. If

a test case fails during integration testing, the newly added code may contain

some errors. To avoid this problem, regression testing should be carried out

whenever a new code is added.

 Regression testing is a type of software testing that verifies that

software that was previously developed and tested still performs correctly

after it was modified or interfaced with other software. Changes may include

software enhancements, patches, configuration changes, etc.

14

1.5.3 Continuous Integration

 Continuous Integration is the process of developing a module in

such a way that the module can be integrated together with other existing

modules, as soon as the module is developed and this integration is not done

at the final stage during integration testing. Unit testing is testing a single,

independent module of a software system in isolation. Integration testing is

testing the complete system with all its modules integrated together, to make

certain that all the modules work properly when they are integrated.

Continuous integration is performing integration tests frequently. Continuous

integration is more important for larger and complex software projects.

1.5.4 Simple Design

 The policy behind this practice is that the simple design can

possibly work. Complex design is almost and always a very bad investment.

Complexity to support future features is seldom a good idea.

 Programs should be focused on features that are required today and

not for the requirements required in future. Refactoring the code for

additional tests can be done easily with the help of efficient unit test cases.

1.5.5 Coding Standards

 Coding standards are important for many reasons. First and

foremost, they specify a common format for the source code and

comments. This allows developers to easily share code, and the ideas

expressed within the code and comments, between each other.

 Coding standards helps to keep the code consistent and easy for the

entire project team to maintain and refactor. Different programmers in a team,

use the common coding standard for writing their code and thereby collective

15

code ownership is established. Coding standards can be easily achieved by the

pair programmers. More importantly, a well designed standard will also

detail how certain code should be written, not just how it looks on screen.

1.5.6 Collective Code Ownership

 Ownership should be taken for the partner’s code during the pair

programming. XP team practices collective code ownership. Anyone can

work on any part of the system at any time. There are no class owners. There

is no need to request for changes to classes outside the jurisdiction. If any

change is to be done or a method is to be added, that can be done easily.

Collective ownership enables coding with intention because functionalities

can be added wherever and whenever needed. If needed, complex code can be

made simple and refactoring can be done without much difficulty.

1.6 OBJECTIVE OF THE DISSERTATION

 Software development and maintenance activities are becoming

more complex and quality of software products is very much essential for the

successful completion of a project. Projects have to be completed within the

estimated time, budget and with expected quality. Traditional methodologies

are not so useful in achieving this. New methodologies have to be exercised

for the successful project outcomes.

 Many methodologies have been proposed for software

development. One of the new methodologies is the Distributed Pair

Programming (DPP) approach, which needs to be analyzed for a successful

outcome. Quality and Productivity has to be measured out of this new

methodology.

 The objective of this thesis is to analyse the efficiency of

distributed pair programming practices by measuring and comparing the

productivity and quality with that of the traditional programming practices

16

and to develop a strategy for successful pair matching which is one of the key

issues in distributed pair programming. The main contributions of the thesis

are:

 Investigations and Analysis of the results of the experiments

conducted for finding the efficiency of distributed pair

programming.

 A novel method proposed for successful pair matching and

effectiveness of that method is analysed because pair

matching is one of the essentials for successful pair

programming activity.

 An investigation and analysis for enhancing learning

experience of e learners in laboratory courses.

 A pair recommender system proposed to discover pair

compatibility, based on association rule which is used in data

mining to discover interesting relations.

1.7 THESIS ORGANIZATION

 The objective and motivation for agile methodology is discussed in

this chapter. The objectives and values of Extreme Programming are also

discussed here. Pair Programming and Distributed Pair Programming, the key

practices of Extreme Programming are described in this chapter. The

remaining chapters of this thesis are organized as mentioned below:

 In Chapter 2, literature survey and results related with the

efficiency of pair programming and distributed pair programming are

analyzed and results are discussed and summarized.

17

 In Chapter 3, the results of experiments conducted to evaluate the

efficiency of distributed pair programming, compared with solo programming

are investigated and analyzed. Twenty metrics were selected for evaluation

purpose. A software tool was developed for communication between remote

pair programmers. The experimental results show that Distributed Pair

Programming yields best quality and productivity than compared with that of

solo programming.

 In Chapter 4, a novel method is proposed and discussed to form

student pairs for programming laboratory courses based on weighted graph

matching technique, incorporating necessary psychological factors for

compatibility between pairs. Analysis of experimental results show that the

proposed method for pair matching using weighted graph matching technique

is an efficient way for pair matching which will help in successful pair

compatibility and thereby yield the productivity and quality which are

necessary for a successful outcomes.

 In Chapter 5, a method for enhancing the learning process of

e-learners in a lab assignment is suggested. Various experiments were

conducted and the results suggest that both pair programming and distributed

pair programming can enhance the learning experience of e-learners.

 In Chapter 6, a Pair Recommender system is proposed based on

Association Rule. Association rules are used in data mining to discover

interesting relations. In pair programming, association rules are used to

discover pair compatibility. Pair compatibility based on previous successful

projects, skill levels, designation, personal interests are also identified.

 In Chapter 7, conclusion of the entire research work are

presented, the summary of contributions for the thesis is given and the scope

for future research opportunities is also mentioned in this chapter.

18

CHAPTER 2

LITERATURE SURVEY

 Various research works are going on across the globe to analyse

the efficiency of distributed pair programming in software industry and in

academia. Those published research findings were surveyed in this chapter,

analyzed and summarized.

2.1 SOFTWARE DEVELOPMENT PRACTICE

 Agile management or Agile process management or simply agile

refer to an iterative, incremental method of managing the design and build

activities for engineering, information technology, and other business areas

that aim to provide new product development in a highly flexible and

interactive manner.

 Agile programming involves delivering the software which is

working efficiently, after a thorough testing. This work is carried out as

several iterations with a time duration of two to four weeks. As the iterations

are created and implemented, work pressure also increases as the customer

requirements keep on increasing. Under such pressures, when there is a

traditional programming practice, which will have more time consuming

analysis, design and testing phases, large amounts of documentation has to be

produced which is a time consuming process. As a result of this, software will

be delivered late. Fortunately, the best practices of agile have proven to

enable more frequent delivery of products with higher quality. These agile

best practices help the programmers and hence the code itself become more

19

agile. The smaller cycles of agile programming appear to be less rigorous, but

the effectiveness comes from the application of these practices with great

discipline. This discipline leads to extensible, code with less defects and

robust design that will work efficiently. It is well-factored and well-protected

by unit tests.

 There is significant dependence on personal communication and

customer collaboration. Agile methodology can be difficult to apply in the

following situations:

 When the team size is large and the team members are without

adequate software tools required for software development.

 When the team members are unable to share their ideas and

there is difficulty to communicate with each other.

 When the team members have no exposure to agile

methodology.

 By analyzing the problems and difficulties experienced by team

members in each of the situations, solutions can be found by conducting

research experiments for an effective implementation of agile methodology.

2.1 AGILE PROGRAMMING ENVIRONMENTS

 A problem arises to maintain close collaboration practices and run

agile project in a distributed setup (Concas et al. 2007). As a solution to this

problem, a suitable tool support is usually employed; however, it seems

insufficient at the moment. (Concas et al. 2007) present a set of general

requirements that become a basis for further investigation into distributed

collaboration needs and challenges. As a verification of initial assumptions, a

new system was designed and part of it, which is responsible for supporting

20

distributed pair programmers, implemented and experimentally evaluated.

The first group includes conferencing applications like Microsoft NetMeeting,

virtual whiteboards and desktop sharing solutions. The second group tool is

TUKAN environment with a pair programming oriented tool consisting of

voice-video connection and other communication means. It proposes the

following general requirements :

 The system must support (preserve, stimulate, not suppress)

the phenomenon of synergy which is not only the most

valuable but also crucial factor, especially under the

circumstances of a team and distribution of its pairs.

 The system ought to cover all functions that are recognized as

necessary or useful in the geographically co-located mode,

which stay in accordance with the primary requirement,

including functions which are decisive only for the

friendliness of it.

 The system must fulfill all requirements for a modern

computer system of its type as long as a conflict with the

primary or secondary requirements does not arise.

 The editor was developed (Concas et al. 2007) as a part of a larger

system called Agile Studio, meant for supporting selected agile practices. It

has been observed that every collaboration is likely to take advantage of

certain shared objects. Therefore, the editor is based on server-client

architecture, where server side is responsible for sharing synchronized

instances of the session objects through source files.

 Three general cases for non-colocated, agile aligned development

(Alistair Cockburn & Laurie Williams 2001) are as mentioned below:

21

 Agile Outsourcing (AO) is a concept where an agile team is created

at an appropriately low cost offshore location. Requirements are given by

onshore team using shared documents. Here onshore team refers to the team

which may be in another country or a different location.

 Agile Dispersed Development (ADD) is practiced by many of the

Open Source community and also by few commercial companies.

 Distributed Agile Development (DAD) is an approach where

customers are distributed. One development team is distributed evenly over

several sites to remain close to the customers.

 Team members who are involved in Distributed Extreme

Programming (DXP) as well as Distributed Pair Programming (DPP) are

provided with as many communication media as possible (Alistair Cockburn

& Laurie Williams 2001). At least communication media like individual,

conference telephone, teleconference, video conference, email, IM, wiki and

VNC will be provided. Widely separated team members need to maintain a

common identity as solution providers for the technical problem. They need

to share rights and responsibilities toward each others’ work, just as co-

located workers do.

 Members of a team in one location find it difficult to understand the

point of view of members from another location. Trust and cooperation break

down amongst the members; it is hard for one local group to work effectively

with another. Team members find it hard to have faith in the good intentions

of remote colleagues. Blamestorming replaces collaboration; finger pointing

replaces problem solving (Alistair Cockburn & Laurie Williams 2001).

 The following Agile principles allow development teams to do

their work efficiently.

22

 Distributed Standup

 Multiple Communication Modes

 Remote Pair

 One Team, One Codebase

 Functional Tests Capture Requirements

 One Team, One Build

 Code is Communication

 Tests Announce Intention

 Convention speaks against having two people work together to

develop code – having “two do the work of one”, as some people see it.

Managers view programmers as a scarce resource and are reluctant to "waste"

such by doubling the number of people needed to develop a piece of code and

also experienced programmers are very reluctant to program with another

person. Some say their code is "personal," or that another person would only

slow them down. Others say working with a partner will cause trouble

coordinating work times or code versions. But it must be noticed as several

well-respected programmers prefer working in pairs, making it their preferred

programming style. Seasoned pair programmers describe working in pairs as

"more than twice as fast”. Qualitative evidence suggests the resulting design

is better, resulting in simpler code, easier to extend. Even relative novices

contribute to an expert' programming, according to interviews.

2.2 EXTREME PROGRAMMING ENVIRONMENTS

 DXP (Distributed Extreme Programming) and open source

processes can be used as a baseline according to Wells & Williams (2002)

and in that case, the work processes of virtual software teams are improved.

23

 XP teams are usually much more closely coordinated than open

source projects. Hence, project coordination support is strongly required for

DXP. Here the tasks are assigned to XP team in a coordinated manner and

deadlines are set as well as overview of the current state of the project is also

updated. Team members access their to-do lists and to perform their tasks

they retrieve relevant information in a coordinated way.

 To establish synchronous communication, extensive e-mails are

used as well as audio and video calls and text chat are also used. In the case of

pair programming sharing of their application is also done. Both pull as well

as push access of information is done for the user.

 The MILOS framework discussed in (Wells & Williams 2002)

nicely fits the requirements on DXP support. The overall goal of the MILOS

approach is to support process execution and organizational learning for

virtual software development teams. In this section , how MILOS supports

Distributed XP (DXP) is explained. The support provided by MILOS should

be minimally intrusive to reduce overhead: MILOS stands for “Minimally

Invasive Longterm Organizational Support”. The MILOS approach can be

applied for open source projects as well as for commercial teams that are

distributed over the world. It was adapted to support distributed XP.

 Nevertheless, several extensions for supporting distributed XP like

user stories in which a new product type that represents user stories was

added. In addition, whenever a new user story is entered, MILOS ASE

automatically adds a task for implementing this story into the task list. Also

release and iteration planning allows easily defining and changing releases,

iterations, user stories, and tasks. In a distributed setting, the system provides

awareness on what is going on in the project based on four task levels from

XP namely, release, iteration, user story and task. Further MS NetMeeting is

integrated to be able to support distributed pair programming and

synchronous communication.

24

2.4 PAIR PROGRAMMING ENVIRONMENTS

 Pair programming is one of the twelve practices of Extreme

Programming (XP) (Beck 2000). In pair programming it is assumed that the

pairs will be working in front of the same workstation (Wells & Williams

2002). If Extreme Programming is to be used for distributed development of

software, collocation becomes a limitation. A variant of Extreme

Programming is used through distributed pair programming or virtual

teaming.

 A Virtual team can be defined as a group of people who work

together towards a common goal, but across time, distance, culture

and organizational boundaries (George & Mansour 2002).

 (Source : https://github.com/FreeCodeCamp)

Figure 2.1 Typical Pair Programming Environment

25

 Pair programming (Brian 2004) transforms what has traditionally

been a solitary activity into a cooperative effort. One of the developers, called

the driver, controls the computer keyboard and mouse. The driver is

responsible for entering software design, source code, and test cases. The

second developer, called the navigator, examines the driver’s work, offering

advice, suggesting corrections, and assisting with design decisions. The

developers switch roles at regular intervals. Figure 2.1 shows the typical pair

programming environment. Although role switching is informal, a typical

interval is 20 minutes in between role switching.

 The experiment conducted at North Carolina State University,

United States of America, is a first indication that distributed pair

programming is a feasible and efficient method for dealing with team projects

(Wells & Williams 2002). The following were observed based on the

experiment :

 Distributed pair programming in virtual teams is a feasible

way of developing software. Virtual teams represent the

teams which are geographically separated.

 Software development involving distributed pair programming

is comparable to that developed using co-located pair

programming or virtual teams without distributed pair

programming.

 The two metrics used for this comparison were productivity

(in terms of lines of code per hour) and quality (in terms of the

grades obtained) while conducting laboratory experiments.

 Co-located teams did not achieve statistically and significantly

better results than the distributed teams.

26

 Feedback from the students indicate that distributed pair

programming fosters teamwork and communication within a

virtual team.

The features expected out of a typical distributed pair

programming tool (Hiroshi 2003) are as given below.

 Synchronous editing of source code: As is the case for any

modern source code editor it should highlight keywords based

on the programming language being used and provide

conventional editing tools such as: Cut, Copy, Paste, Find, and

Replace.

 Only two programmers need to collaborate at the same time.

 The system should support the options of compiling and

executing the source code being edited and should notify the

users of the error messages reported by the compiler.

 The source code files to be shared should be stored in Web

repositories to ensure that documents are available to all

members of the development team. Furthermore,

configuration control tools are increasingly being developed

on top of Web servers to take advantage of the Web’s ubiquity

and open standards.

 Access to documents being edited should be controlled at the

repository level. Mechanisms to request and obtain shared

resources need to be provided.

 Pair programming demands frequent communication between

colleagues. The system should support text and audio-based

communication.

27

 Awareness of the presence and state of authors and

documents, as well as access rights pertaining to shared

resources should be provided to the users.

 Data were analyzed in terms of productivity and quality, as defined

above. Also, student feedback formed an important input for the experiment.

The objective was not to show that, distributed pair programming is superior

to co-located pair programming for student teams. But the real objective was

to demonstrate that distributed pairing is a viable and desirable alternative for

use with student teams, particularly for students who are learning in the

distance mode. The results show that distributed teams had a slightly higher

productivity as compared to co-located teams; It is to be noted that pair

programming:

 It should significantly reduce the risk of subtle errors that

would make debugging excruciating;

 It could give us a much broader code review;

 It would provide an opportunity to share knowledge between

programmers.

The significant benefits of distributed pair programming are that

(Alistair Cockburn)

 Quality: Two developers produce code with less defects. The

navigator continuously reviews the code and design, which

enables early defect detection and removal during the pairing

session.

 Time: Two developers use less time to produce the same

quantity of code when compared with a single developer.

28

 Teamwork: Pair programming can improve the relationship

between developers, which builds trust and improves

teamwork.

 Knowledge transfer & Learning: Pair programmers can share

and learn knowledge from each other during the pairing

session.

 Job satisfaction: The intensive collaboration helps job

retention for employees

 Alistair Cockburn it is found that for a development-time cost of

about 15%, pair programming improves design quality, reduces defects,

reduces staffing risk, enhances technical skills, improves team

communications and is considered more enjoyable at statistically significant

levels. It took only 15% more time for the pair programmers than compared

with solo programmers for completing the experiment. Significantly the

resulting code had 15% less defects for pair programmers when compared

with solo programmers.

2.5 DISTRIBUTED PAIR PROGRAMMING ENVIRONMENTS

 Schumer and Schumer (Till & Jan 2001) and Maurer (Frank

Maurer 2002) have conducted research in this domain and suggest that

distributed pair programming (DPP) can work efficiently. In a work by Baheti

et al. (Prashant Baheti) suggests that distributed pairing can be as effective as

co-located pairing. Canfora et al. (Gerardo et al. 2003) analysed virtual

pairing with the help of students, who were using a screen sharing application

along with a text-based chat application. No audio channel was provided to

the students.

29

 Stotts et al. (David Stotts et al. 2003) provides further evidence of

the potential success of distributed pairing. They describe an on-going series

of experiments and case studies in which students virtually paired. Although

distributed pairs successfully completed their programming assignments, they

complained of their inability to point or gesture. As Stotts observed, "pairs

need better capabilities for indicating areas of interest".

 A representative sample of responses from the pairs where they

enjoyed distributed pair programming (Brian 2004) include:

 It allows the pairs to work comfortably of their work place

without ever getting out of our chairs and it also helped to

overcome some schedule conflicts and the time that would

have been wasted just walking to the other person's computer.

That time was instead turned into productive time for

programming.

 One do not have to go all the way to a computer lab for pair

programming.

 It made distributed pair programming very easy and

convenient. There was no necessity to meet the pair in the

campus or at each other's houses so that distributed pair

programming can be done without the effort of getting

together. The class would have required a lot more time

without the tool.

 The following are the responses collected from the students, who

have used the distributed pair programming tool.

 Without meeting in person, peers were able to work perfectly.

They could work on it any time and also could take long

breaks.

30

 The pair programming tool allowed the peers to work together

from two different locations. The pointing function of the

program also made it easier to point out errors and did not

allow them to do syntax errors while typing the program.

 There is a flexibility in the case of two partners who cannot

meet in person and work together. One of the pairs liked being

able to work on a separate computer.

 It is easier to work individually in a separate computer, than

sharing a computer.

 Being able to switch driver/navigator role easily.

 Some of the students did not like the experiment for the reasons

given below:

 Communication with the partner using the software tool was

not so comfortable as expected.

 The tool was difficult to use when the pairs were

programming something they had never programmed it before

– for instance, when they tried new data structures for the first

time.

 The software tool was not a good way to communicate, even

with the headsets. Sometimes it was difficult to explain some

concept through the headset.

 In the COPPER (COllaborative Pair Programming EditoR) System

(Hiroshi 2003), a synchronous source code editor that allows two co-located

software engineers to write a program using pair programming. COPPER

implements characteristics of groupware systems such as communication

mechanisms, collaboration awareness, concurrency control and a radar view

of the documents. It also incorporates a document presence module, which

31

extends the functionality of instant messaging systems to allow users to

register documents from a web server and interact with them in a similar

fashion as they do with a colleague. The results obtained from a preliminary

evaluation report of COPPER, provides the evidence that the system could

successfully support distributed pair programming. The audio module

establishes and maintains an audio communication channel between two

clients so that their users can hold a conversation while collaborating.

 Agile methodologies stress the need for close physical proximity of

team members. However, circumstances may prevent a team from working in

close physical proximity. For example, a company or a project may have

development teams physically distributed in different locations. As a result,

increasingly many companies are looking at adapting agile methodologies for

use in a distributed environment (Wells & Williams 2002).

 Prashant Baheti et al. describes the development and study of a

technique tailored for distributed programming teams. The technique is based

on an emerging software engineering methodology known as pair

programming combined with nearly 20 years of widespread and active

research in collaborative software systems. Students use interactive

information technology over the Internet, such as PCAnywhere and

NetMeeting, to jointly and simultaneously control a programming session and

to speak with each other synchronously. The earliest example of a

collaborative computer system was NLS-Augment by Engelbart (Engelbart&

English 1968), an initial version of which was demonstrated in the early 1960.

Engelbart’s system used shared CRTs, audio connections, mouse and

keyboard to allow crude teleconferencing and shared examination of text files

by users who were not co-located. From these early beginnings, collaborative

software systems became the subject of widespread research more than 15

years ago, with the creation of the personal computers. Ongoing research

32

tends to focus in three main areas: hardware to provide effective

communications; software that allow sharing of artifacts; and conceptual

models of how people want to or are able to interact effectively. The success

of the simple DXP platform has led to construct one that collaborators with a

more significant video image, including the ability to create hyperlinks in a

real-time video stream.

 The following hypotheses were examined by (Prashant Baheti et

al. 2002) for analyzing the effectiveness of distributed pair programming:

 Distributed teams whose members pair synchronously with each

other will produce higher quality code than distributed teams that do not

pair synchronously. In the academic environment, quality can be assessed

by the grades obtained by the students for their project. A statistical T-

test can be performed to find whether one of the groups gets statistically

and significantly better results at different levels of significance (p < 0.01,

0.05, 0.1 etc.).

1. Distributed teams whose members pair synchronously will be more

productive than distributed teams that do not pair synchronously in

terms of number of lines of code produced per hour.

2. Distributed teams who pair synchronously will have comparable

productivity and quality when compared with collocated teams.

3. Distributed teams who pair synchronously will have better

communication within the team when compared with distributed

teams that do not pair synchronously.

4. Distributed teams who pair synchronously will have better

teamwork within the team when compared with distributed teams

that do not pair synchronously.

33

 Five out of six (83%) students involved in distributed pair

programming thought that technology was not much of a hindrance in

collaborative programming. Also, about the same percentage (82%) of

students involved in virtual teaming with or without pair programming felt

that there was a nice cooperation among team members. The experiment

conducted for this purpose was a classroom experiment among 132 students,

including 34 distance-learning students. To draw a significant conclusion,

such experiments have to be repeated on a larger scale if possible. However,

these experiments have given initial indications of the viability of distributed

pair programming.

 The statistical analysis showed a phenomenon, called the dismissal

hypothesis: distributed pairs tend to stop collaboration and begin working as

solo programmer (Gerardo 2003). Further it shows that in distributed pair

programming, people need a communication media that owns at least two

features: vocal communication and a blackboard.

 Four causes have been recognized: the faulty phone cause, the

stranger cause, the two-minds cause and the anarchy cause. (Canfora et al. 2003)

 A defective communication is one of the four causes of the

pair dismissal which is identified as the faulty phone cause.

 When the pairs competence levels are different the pairs

cannot be compatible with each other and this is identified as

stranger cause. The pair has to present very comparable levels

of competence. A way to obtain such a condition is to make

the pairs work together in many projects. In this way, it is also

possible to prevent the stranger cause.

 When the pairs have difference of opinion, it results in

incompatibility between pairs. This is identified as two-minds

34

cause. The meeting should be realized with closing

assessment aiming at verifying that the pair has formed an

unique mind. The unique mind is intended as a uniform vision

of the domain, strategies, goals, and the overall knowledge to

be applied during the project. This should avoid the two-

minds cause.

 The pairs should be selected in such a way that they are

compatible with each other with mutual interests and without

any ego conflicts. This will avoid the anarchy cause.

 To manage distributed pair programming efficiently and

successfully the following practices have to be adopted:

 Establish a behavioral protocol that defines clearly the roles in

the pair and the switching of roles;

 Pairs are to be selected with comparable experience and

capabilities;

 Make pairs familiar in working with each other;

 Plan frequent brainstorming in order to create a common

vision and goal for the project.

 The following hypotheses were considered when comparing the

distributed team which paired synchronously and the distributed team which

did not pair synchronously by (Prashant Baheti et al. 2002).

 Hypothesis 1: Distributed teams whose member’s pair

synchronously with each other will produce higher quality

code than distributed teams that do not pair synchronously.

35

 Hypothesis 2: Distributed teams whose members pair

synchronously will be more productive than distributed teams

that do not pair synchronously.

 Hypothesis 3: Distributed teams who pair synchronously will

have comparable productivity and quality when compared

with co-located teams.

 Hypothesis 4: Distributed teams who pair synchronously will

have better communication and teamwork within the team

when compared with distributed teams that do not pair

synchronously.

2.6 TOOLS FOR AGILE DEVELOPMENT PROCESS

 The tool described in (Brian 2004) is based on the open source

screen sharing application Virtual Network Computing (VNC) (Tristan et al.

1998). Experiments were conducted (Brian 2004) with control group as well

as experiment group with students. Students in the control and experimental

groups were performed equally well on the final examination. Although, it is

not statistically significant, students who used the tool performed better in the

examination than the students in the control group. Students in both

experimental groups were also equally confident in their programming

solutions. The following comments from the students were collected and

analysed.

 When some of the students were asked why they were not using

the distributed pairing tool, they answered that, they never had any necessity

for using the tool, because it was easier for them to meet their peer in the lab

and communicate with them.

36

 It is observed that the above remark were given by the students

when VNC was used in the same lab and hence the students find meeting

peers is easier than using the tool. But when it is required in projects where

the users do not meet because of distance between them, then DPP

(Distributed pair programming) is necessary.

 The COLLECE (COLLaborative Edition, Compilation and

Execution) system (Bravo et al. 2007) is a groupware tool that enables users

who are located in different workstations to collaborate in the same time (real

time) in the building of a software product. COLLECE was used in a study to

compare the experiences of Distributed Pair Programmers (DPPs) (Williams

& Kessler 2002) and solo programmers. Here in the study mainly the

productivity and program quality are considered. It was observed that when

the distributed pair programmers have enough experience in the use of the

groupware tool and work collaboratively with their partner, the quality of

program is better than of those built by solo programmers. But DPPs spent

more time in completing their tasks, because they have to carry out additional

interactions in order to coordinate and communicate in a distributed

collaborative synchronous environment.

2.7 CONCLUSION

 Pair programming which is a part of Agile software development

method has been one of the leading research areas. Mostly such research

setup are academic environment where both the programmers in the pair co-

located. This will not be the case when we experiment in real time

programmers in the industry. Hence the need for attempting distributed pair

programming arises. In this chapter, the recently published research findings

related with distributed pair programming were surveyed, analyzed and

summarized. The main objective is to find the reasons for incompatibility

between pairs where sharing the knowledge with the partner is not effective,

which results in low quality.

37

CHAPTER 3

ASSESSING THE EFFECTIVENESS OF DISTRIBUTED

PAIR PROGRAMMING FOR LABORATORY COURSES

 The effectiveness of distributed pair programming was analysed by

using an experimental technique for laboratory courses in the academia. The

experimental technique is discussed in this chapter.

3.1 DISTRIBUTED PAIR PROGRAMMING

 Pair programming is an agile software development technique in

which two programmers work together at one computer on the same design,

algorithm, code or testing activity. One of the key requirements of pair

programming is the strong and effective communication between the pairs. To

enable this strong level of communication between the pairs, XP emphasizes

that pairs should be physically located close to each other. For various reasons

this co-location may not be feasible. The reasons may be due to on-shore

projects the pairs may be geographically separated or the pairs may be

working in a different locations due to the nature of the project.

 Distributed pair programming is the practice where two pairs are

geographically separated and are working for a same problem. Higher quality

products are produced more rapidly. This chapter demonstrates that

distributed pair programming could be very effective in promoting a student’s

ability to learn programming concepts in lab courses in a faster and more

38

efficient way when compared to solo-programming. Supportive results are

projected to validate the claim using various parameters.

3.2 EXPERIMENTAL SETUP

 Subjective affirmation from software companies recommend that

software developers are often required to work collaboratively all through

their professional life (Nagappan et al. 2003), consequently companies

anticipate that future software developers be given such training throughout

their undergraduate education (Cliburn 2003). Pair programming has, over the

last five years, been look into as a promising technique to offer such skills,

apart from other cited benefits. Williams et al. (Williams et al. 2003) describe

pair programming (PP) as two programmers jointly produce one artifact. The

artifact may be a design or an algorithm or a code. The two programmers are

like a unified, intelligent organism working with single mind, responsible for

every aspect of this artifact. One of the pair, called the driver, will type the

code in the computer or will produce a design document. The other partner,

called the navigator, has many roles. One of the roles of the navigator is to

observe the work of the driver, looking for defects in his/her work. He/she has

to guide the driver in the right direction by giving suggestions for completing

the assignment successfully.

 The benefits of pair programming are described to include

enhanced quality, collaboration, communication, confidence and

understanding (Beva et al. 2002; Declue 2003) (Hanks et al. 2004). However,

disadvantages have also been suggested, including pair incompatibility

(Bevan et al. 2002;McDowell et al. 2003) and unequal participation (Thomas

et al. 2003). Mainly studies on pair programming examine subject’s

collaboration sharing the same computer/desk/paper. However in recent times

other studies also looked into the impact of distribution to the effectiveness of

pair programming (Canfora et al. 2003; Natsu et al. 2003). In addition, a

39

number of pair programming trials have been engaged at preliminary courses,

and a few at more higher computer science courses.

 Only one of the studies in the literature review has used second

year students as subjects of a pair programming trial. This chapter presents

the results of a distributed pair programming trial conducted in a college level

with first year students. This contribution is consequently to add pragmatic

confirmation to the present body of familiarity on distributed pair

programming regarding this methods worthiness or not for getting better

academic results and satisfaction of students.

 Similar issues were explored to those reported in (Williams et al.

2003), and in particular at whether distributed pair programming enhance

learning and the enjoyment of those students who take part in collaborative

activities. A subset of the questionnaires were employed in the experiment

which was used by (Abdullah Mohd ZIN et al.2006) while conducting the

experiments. Sections 3.1 and 3.2 provides a summary of the distributed pair

programming related work, followed by section 3.3 where our experiment is

described. In section 3.4, inferences from the metrics analysis to measure the

effectiveness of DPP are described. In section 3.5, inferences from the lines

of code analysis are described. Inferences from the defects analysis are

described in section 3.6 At last, conclusions are given in Section 3.7.

3.3 RELATED WORK

 A variety of techniques have been implemented for forming pairs.

(McDowell et. al 2002), to permit students to decide their own partners, alike

trend observed in (Williams et al. 2000). Nagappan et. al (2003), used a

software program to create random partner assignments. Thomas et al. (2003)

had students rate their programming abilities and allocated partners based on

these ratings. Cliburn (Williams et al. 2003) assigned pairs by consortium of

40

students from different cultural backgrounds. Nagappan et al. (Nagappan et

al. 2003) also discuss forming pairs based on personality profiles such as the

Myer-Briggs personality tests and Katira et al. (Katira et al. 2004) suggest

that pair compatibility in basic courses may increase if pairs are formed by

joining students of dissimilar personality type.

 In numerous studies (Cliburn 2003; Declue 2003; Nagappan et al.

2003; Thomas et al. 2003) programmers were assigned to new partners

throughout the semester. However, despite evidence of the benefits of pair

rotation (Srikanth et al. 2004) much research has not been done related with

pair rotation (Bevan et al. 2002; McDowell et al. 2002; Williams et al. 2000).

In terms of experimental design five different choices have been identified:

i) comparison between paired and solo students using separate groups and

over the same semester/sessions (Gebringer 2003; McDowell et al. 2002;

McDowell et al. 2003) ii) comparison between paired and solo using same

group of students over the same semester/session (Declue 2003)

iii) alternating between paired and solo students over several terms/sessions

(Hanks et al. 2004) iv) use of only paired students (Cliburn 2003;Williams et

al. 2000). Some studies (Williams et al. 2003) have kept the experimental

unit fixed (Hanks et al. 2004) while others provided additional or different

assignments to paired students.

3.3.1 Experiments conducted to assess DPP

 The experiments were conducted with the students of first year of

Five Year Integrated M.Sc(Software Engineering). Students of Five Year

Integrated M.Sc(Software Engineering) programme are selected for

admission based on their outstanding academic performance at their school

level and an interview which should reflect their confidence level. The

experiments were performed in two ways. In the first way, each student is

expected to do a programming assignment as a solo programmer related to a

41

computer laboratory course. In the second way, the students are expected to

do programming assignment as a pair programming and they will be located

in two different buildings of the college campus. In the second method, each

programmer was given a computer with all the required software so that they

can communicate with each other through voice chat, desktop sharing and file

transfer options.

Experiment 1 : Solo programming

 In this experiment, 36 students were selected for the experiment. In

this, each student was given a programming question of finding the Least

Common Multiple (LCM) of two numbers, that he/she had to code in a

programming language of his/her own choice. They were given 45 minutes as

maximum time to complete the code. Each student was given a computer with

necessary software for programming. Out of 36 students, 24 students

completed the given assignment on time correctly and the remaining 5

students could not complete the assignment in time and remaining 7 students

completed the assignment but the results were wrong. The solutions given by

the students were analysed based on the parameters like Start Time, End

Time, Time complexity, Lines of Code, Correctness of Code. Most of the

students selected “C” Language for completing the assignment.

Experiment 2 : Pair programming in Distributed environment

 The experiment was conducted on 18 pairs formed with the 36

students considered for experiment 1. Each pair had one student from the

Computer Science stream and one from the Biology Stream at their school

level. The experiment was conducted in two different computer labs, situated

at two different buildings within the same campus. Each pair was given a

computer with all the required software including voice chat, desktop sharing,

file transfer options. A head phone was provided for voice chatting.

42

Figure 3.1 Screen shot of the software used for voice chatting between

the pairs

 In this part each pair was given a programming question of finding

whether a given string or number is a palindrome, that they had to code in a

programming language of their own choice. They were given 45 minutes to

complete the code. A special software was developed using Java for

conducting the experiment. The software will prompt the pairs who are at

different labs, to input the ip-address of their computer, so that a connectivity

will be established between the pairs. The software has features for text

chatting, audio chatting through a head phone. Files can be transferred through

the computers between the pairs where connectivity is established. The desk

top of the pairs can be viewed on their monitor for understanding the work

done by the pairs. Short messages can also be send through this software.

 The experiment was carried out in two computer labs where in each

pair was given a computer with the required software which had the facilities

for voice chatting, desktop sharing and file transfer options. The screen shot

of the software used for voice and text chatting are shown in Figure 3.1 and

Figure 3.2 respectively.

43

Figure 3.2 Screen shot of the software used for text chatting between
the pairs

 Out of 18 pairs, 16 pairs completed the given assignment correctly

and one pair could not complete the assignment in time and another pair

completed the assignment in time but shown wrong output.

 The solutions given by the pairs were then again analysed based on

the same set of parameters used for solo programming along with some

additional parameters like level of interaction when distributed approach was

used. Results are shown using various tables and graphs.

 A questionnaire was given to the students to obtain a feedback

about their experience in distributed pair programming practice. The

questionnaire used to obtain the feedback is shown in Table 3.1. Table 3.2 is

based on the feedback collected from students, who were involved in a

programming lab assignment, which analyzes the effect of distributed pair

programming on their performance. In this experiment students were asked to

give a score ranging from 1 to 5, where 1 stands for strongly disagree, 2 for

disagree, 3 for agreed to some extent, 4 for agree and 5 for strongly agree,

on twenty metrics listed in the second column of the Table 3.2.

44

Table 3.1 Questionnaire for analyzing the quality of DPP
 1. Strongly disagree 2. Disagree 3. Agree to some extent 4. Agree 5. Strongly agree

Sl.No. Metrics Statements Score
(1 to 5)

1 Confidence Collaboration with my pair gives me more
confidence in solving programming problems

2 Confidence Collaboration with my pair gives me more
confidence in writing programs

3 Navigator Role Navigator role is very much important in
guiding the driver to obtain the output

4 Knowledge I have gained more new knowledge by
participating in the pair programming forum

5 Learning process The discussion in the forum is more focused
towards the problem that need to be solved

6 Learning
experience

Collaborating with my peer in solving the
given task is a new rewarding experience

7 Peer My team member gives concrete ideas
8 Persistence This collaborative learning should be expanded

to other courses too

9 Time Less time is taken to obtain the solution using
this approach

10 No. of members This collaboration in the forum will be more
effective if it has more than two members

11 Replacement Pair collaboration with peer could replace the
tutorial classes

12 Satisfactory Level The forum provided in tool to collaborate with
the peer is enough and no other facilities is
required

13 Performance Pair programming let people solve problems
faster than traditional programming

14 Learning time Pair programming provide a mechanism for
continuous and incremental learning

15 Code optimization Pair programming foster a better
comprehension of the piece of code to be
developed

16 Cost / Resources
consumption

Pair programming entail a greater overhead
than traditional development

17 Difficulty with pair I find social difficulties with my companion
18 Social Rules Social rules should be observed when forming

pairs

19 Communication Communication limitations modify
significantly the quality of results during
distributed pair programming

20 Cooperation Distributed Pair programming foster breaking
down cooperative work

45

 The Table 3.2 shows the percentage of students agreeing on each

score category for all the specified twenty metrics.

Table 3.2 Metrics for Data Analysis for DPP

Metric
No. Metrics

Strongly
Disagree

(%)

Disagree
(%)

Agree to
some

extent (%)

Agree
(%)

Strongly
Agree (%)

1 Confidence increases while

solving programming problems
0 0 25 33.33 41.67

2 Confidence increases while
writing Programs

0

2.78

27.78

33.33

36.11

3 Navigator role is very important in
guiding the driver role

0 8.33

27.78

47.22

16.67

4 Knowledge increases for pairs 2.78 11.11 27.78 36.11 22.22
5 Discussion is more focused

towards the problem
0

5.55

16.67

55.56

22.22

6 Learning experience is improved 0 5.56 11.11 50 33.33
7 Team member gives good ideas 0 0 33.33 41.67 25
8 This methodology should be

expanded to other subjects also.
0

0

16.67

33.33

50

9 Less time taken to obtain solution 2.77 2.78 27.78 30.56 36.11
10 If more than 2 members are there

this exercise will be more effective
8.33

33.33

22.22

16.67

19.45

11 This methodology will replace

tutorial classes
8.33

11.11

25

27.78

27.78

12 Satisfactory Level. Facilities
provided are OK.

0

33.33

47.22

16.67

2.78

13 Problems are solved faster. 0 0 16.67 61.11 22.22
14 This method provides continuous

and incremental learning
0

2.78

19.44

41.67

36.11

15 Code Optimization
is possible

0 5.56 19.44 41.67 33.33

16 Cost or Resource Consumption is
reduced

2.78

8.33

41.67

33.33

13.89

17 Difficulty with pair is found 58.33 30.56 8.33 2.78 0
18 Social Rules should be observed

when forming pairs
22.22

25

33.34

11.11

8.33

19 Communication
limitations affect quality of results

0

11.11

75

11.11

2.78

20 It builds up Cooperation among
pairs

13.89 22.22 41.67 19.44 2.78

46

3.4 INFERENCE FROM METRICS ANALYSIS TO MEASURE
THE EFFECTIVENESS OF DPP

 It can be seen from the Table 3.2 that (from the entries which are
marked bold) distributed pair programming gives students more confidence
and increases the efficiency of the overall output of the work assigned to
them. Data analysis for metric 1 and metric 2 from the table reveals that the
confidence level increases in solving a problem in case of distributed pair
programming, as there is a knowledge sharing between the pairs. In case of
metric 4, 11.11% of students express that knowledge level does not increase
in case of distributed pair programming and 36.11% of students agree that
knowledge increases in case of distributed pair programming. This is due to
the communication barriers between the pairs and lack of pair compatibility.
In case of metric 10, majority of students feel that involvement of more than
two people in this experiment, will result in confusion and difference of
opinion. Metric 11 reveals the fact that, 25% of students feel that this
methodology is not an replacement of tutorial classes, as in tutorial classes a
well experienced faculty is involved in the teaching-learning process. Data
analysis for metric 12 from the table reveals the fact that the satisfactory level
for facilities provided for the distributed pair programming practice is slightly
less than our expectation.

 This shows that further analysis is required to improve the software
tool used for distributed pair programming practice. From metric 17, one can
see that, majority of students did not face any difficulty with his/her pair. Data
Analysis for metric 19 reveals that the communication barrier affects the
quality of results. So, further analysis is required for improving the
communication procedure and the tool. Data Analysis for metric 20 reveals
that the cooperation among pairs is build up to some extent only. So, further
analysis is required for improving the cooperation among pairs either by
modifying the software tool or process. This may be also due to
communication defectiveness, lack of behavioral protocols and comparative
experience of pairs.

47

 The five pie charts shown from Figure 3.3 to Figure 3.7 give the
pictorial representations of the percentage of students support for each five
score category for the 20 metrics shown in the Table 3.2. From the pie chart
shown in Figure 3.3 one can see that majority (Metric No.17) of the students
do not agree with the concept that difficulty is experienced with the pair
which is in support of distributed pair programming practice. Metric 20
reveals the fact that most the programmers do not agree that cooperation
among the pairs is not build, because all the pairs selected are from first year
of their programme and due to less amount of time in interacting with each
other during the experiment, they feel that much cooperation cannot be built
up. Metric 18 reveals that many students strongly disagree with the concept
that social rules should be observed when forming pairs. This shows that the
students do not like strict rules and regulations during pair programming.

Figure 3.3 Data analysis of 20 metrics for the feedback “STRONGLY

DISAGREE” from the students

1
0%

2
0%

3
0%

4
2%

5
0%

6
0%

7
0%

8
0%9

2%

10
7%

11
7%

12
0% 13

0%

14
0%

15
0%

16
2%

17
49%

18
19%

19
0% 20

12%

Strongly Disagree
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

48

 12% of the students feel that cooperation among the pairs is not

built up, because all the pairs are from their first year of their M.Sc (Software

Engineering) programme and without knowing each other to a large extent,

they may feel that cooperation may not be there, just because of the

interaction during pair programming.

Figure 3.4 Data analysis of 20 metrics for the feedback “DISAGREE”
from the students

 The pie chart shown in Figure 3.4 shows that some of the students

(Metric No.12) feel that distributed pair programming do not provide a

satisfaction and facilities provided for the experiment are not sufficient. This

needs further investigation and this may be due to the need for additional

procedures and facilities for incremental learning. Metric 17 reveals that

1
0%

2
1%

3
4% 4

5%

5
3% 6

3%

7
0%

8
0%9

1%

10
15%

11
5%

12
15%

13
0%

14
1%

15
3%

16
4%

17
14%

18
11%

19
5%

20
10%

Disagree

49

many students did not have any difficulty with his /her pair during pair

programming. This indicates that the pairs are compatible with each other.

Figure 3.5 Data analysis of 20 metrics for the feedback “AGREE TO
SOME EXTENT” from the students

 The pie chart shown in Figure 3.5, reveals the fact that

communications limitations affect quality of results to a certain extent. This

shows that the communication tool and procedure needs further improvement.

(Metric No.19). This reveals the fact that better software tools are necessary

for communication between the pairs. 7% of the students feel that the cost or

resource consumption is reduced. This is due to the fact that, communication

takes place through audio chatting or by sending the message to the pair. File

transfer feature is also enabled in the communication software. All these

features reduce the cost consumption. Knowledge transfer also helps them to

solve the problem without taking much time. This is another useful

mechanism where the usage of resources are not wasted.

1
4% 2

5% 3
5%

4
5% 5

3%

6
2%

7
6%

8
3%9

5%

10
4%

11
4%12

8%
13
3%

14
3%

15
3%

16
7%

17
1%

18
6%

19
13%

20
7%

Agree to some extent

50

Figure 3.6 Data Analysis of 20 metrics for feedback “AGREE” from
the students

 The pie chart shown in Figure 3.6, reveals that majority of the

students agree that (Metric No.13) problems are solved faster during the pair

programming practice where, time is saved when compared with solo

programming practice. Metric No. 5, indicates that discussion is more focused

towards the problem during pair programming. Since only two people are

involved the discussion is more focused on the problem and it may not divert

to other issues. Programmers also agree that the team member gives good

ideas (Metric No. 7) and learning experience is improved. (Metric No.6)

1
5% 2

5%
3

7%

4
6%

5
9%

6
8%

7
6%8

5%
9

5%
10
3%

11
4%12

3%

13
9%

14
6%

15
6%

16
5%

17
0%

18
2%

19
2%

20
3%

Agree

51

Figure 3.7 Data analysis of 20 metrics for the feedback “STRONGLY
AGREE” from the students

 The pie chart shown in Figure 3.7, reveals that most of the students

strongly agree that the distributed pair programming practice should be

expanded to other subjects also, which in support of distributed pair

programming practice(Metric No.8). The students feel that this methodology

will help in solving the problems without much difficulty in case of complex

courses as there is knowledge sharing between the pairs and innovative ideas

may emerge during the communication process between the pairs. Metric 1

and 2 indicates that confidence level increases during pair programming

which is strongly agreed by many students. Metric 9 indicates that with in

a short period of time, students were able to solve the problems and they

could obtain a solution.

1
9%

2
8% 3

4%

4
5%

5
5%

6
7%

7
6%8

11%

9
8%

10
4%

11
6%

12
1%

13
5%

14
8%

15
7%

16
3%

17
0%

18
2%

19
1%

20
1%

Strongly Agree

52

3.5 INFERENCE FROM LINES OF CODE ANALYSIS TO

MEASURE THE EFFECTIVENESS OF DPP

 Based on number of lines of code and time taken by them to code,

graphs shown in Figure 3.8 and Figure 3.9 were plotted. Graphs shown in

Figure 3.8 plots the average lines of code by all students against the time

interval when the output of the code is correct.

Figure 3.8 Lines of Code analysis for correct outputs

Figure 3.9 Lines of Code analysis for wrong outputs

0
5

10
15
20
25
30
35
40

5-15 Mts 16-30 Mts 31-45 Mts 46-60 Mts

AV
G

. L
IN

ES
 O

F
CO

DE

TIME INTERVAL SCALE

Avg. Lines of Code Vs Time Interval
(Correct Output)

DPP

SOLO

0

10

20

30

40

5-15 Mts 16-30 Mts 31-45 Mts 46-60 Mts

AV
G

. L
IN

ES
 O

F
CO

DE

TIME INTERVAL SCALE

Avg. Lines of Code Vs Time Interval
(Wrong Output)

DPP

SOLO

53

 The four time intervals are 5-15, 16-30, 31-45 and 46-60. Time
Intervals are given in minutes. Series1 represents distributed pair
programming and Series 2 represents solo programming. In Figure 3.8 we can
observe that in distributed pair programming, the average lines of code is
always less when compared to the solo programming in all the four time
intervals in case where the output is correct. It is observed from Figure 3.8, that
there was no student who completed the code with correct output in the case of
distributed pair programming experiment in the time interval ranging between
31 to 45 minutes. Figure 3.9 plots the average lines of code by all students
against the time interval when the output of the code is wrong. It is observed
that in all the four time intervals solo programmers exist with wrong outputs.

3.6 INFERENCE FROM DEFECT ANALYSIS TO MEASURE
THE EFFECTIVENESS OF DPP

 Figure 3.10 shows the graph which plots the number of students
who got wrong outputs in the four time intervals for both distributed pair
programming and solo programming. Series 1 represents distributed pair
programming and Series 2 represents solo programming. It is observed from
the Figure 3.10 that there were no students in the case of distributed pair
programming who got wrong outputs in the time interval ranging between 5
to 15 minutes and 31 to 45 minutes.

Figure 3.10 Time Analysis for wrong outputs

0

2

4

6

8

10

12

14

5-15 Mts 16-30 Mts 31-45 Mts 46-60 Mts

N
O

. O
F

W
RO

N
G

 O
U

TP
U

TS

TIME INTERVAL SCALE

Wrong Output Vs Time Interval

DPP

SOLO

54

 Figure 3.11 shows the graph which plots the number of students

who got correct outputs in the four time intervals for both distributed pair

programming and solo programming. It is observed from the Figure 3.11 that

there were no students in case of solo programming, who got the correct

outputs in the time intervals ranging between 5 to 15 minutes, 16 to 30

minutes and 31 to 45 minutes.

Figure 3.11 Time Analysis for correct outputs

 This is due to the fact that since the students are in the first year of

their Five Year Integrated M.Sc (Software Engineering), they took some more

time for completing the experiment with correct output. One can see that

wrong outputs are maximum in case of solo programming and minimum in

case of distributed pair programming. It is also observed that maximum

number of correct outputs were obtained in case of distributed pair

programming and minimum number of correct outputs were obtained in the

case of solo programming.

0

1
2

3
4

5
6

7
8

5-15 Mts 16-30 Mts 31-45 Mts 46-60 Mts

N
O

. O
F

CO
RR

EC
T

O
U

TP
U

TS

TIME INTERVAL SCALE

Correct Output Vs Time Interval

DPP

SOLO

55

3.7 CONCLUSION

 Experiments have been conducted to evaluate the performance of

students who engaged in distributed pair programming during laboratory

courses with those who worked solo during the laboratory sessions. Even

though the laboratory sessions did not add directly to the final grade, the

outcome of being involved in a distributed pair programming experience

appear to have enhanced the quality of assignment work. Furthermore, the

majority of students enjoyed the practice and would like to have distributed

pair programming in courses. The results provide the support for use of

distributed pair programming practices in the software engineering

curriculum. Future work will verify the results by repeating the experiments

again for the forthcoming laboratory courses and for finding out more about

the students who did not enjoy the distributed pair programming practices.

56

CHAPTER 4

WEIGHTED GRAPH MATCHING APPROACH FOR PAIR

COMPATIBILITY IN PAIR PROGRAMMING

 Pair compatibility plays a significant role in the performance of a

pair in the given lab assignment. Weighted graph matching technique is

proposed in forming pairs with high degree of pair compatibility.

4.1 INTRODUCTION

 Pair programming is a popular practice under Extreme

Programming. It is increasingly followed in IT industries for effective

software development and in many educational institutions for laboratory

assignments. Traditionally, pairs are formed based on individual preferences

or administrative authority’s decision to support organization requirements as

there are no standard procedures for forming pairs. A pair’s performance will

be highly productive if they are more compatible with each other. In this

chapter, a novel method is proposed to form student pairs for programming

laboratory based on weighted graph matching technique incorporating

necessary psychological factors for compatibility between pairs. The

experimental results demonstrate that the proposed method yields better

performance of the pairs.

4.2 SIGNIFICANCE OF PAIR MATCHING

 Extreme programming (XP) is a kind of agile software

development methodology that stresses on achieving customer satisfaction

through team work and focuses on bringing high productivity. Pair

57

programming is one among the various principles of XP and it has been

followed in many software industries and universities especially for tasks

related with software development.

 Despite the benefits of pair programming, there are also some

negative views about it. (Tessem 2003), showed that some students found the

experience so irritating, inefficient and exhausting. Very similar results were

found by (Gittins & Hope 2001). In their study, participants described the

experience with pair programming as demanding and sometimes frustrating.

Moreover, (VanDeGrift 2004) showed that the students complained about

working among people with different personalities and skill levels. Also,

Lucas Layman’s study (Layman 2006) on the effects of collaborative work on

students cited non participatory partners and difficulties in scheduling

discussion times outside the classroom as major reasons for students disliking

pair programming. In spite of these negative outlooks, new methods are

appearing with comparable performances and greatly successful outcomes

giving credence to the idea of pair programming. Generally, it is always

preferable to have a companion who could be supportive in achieving the

target, instead of performing the assigned task by working all alone.

Programming is not an exception to this conviction.

 A challenging task in pair programming is to anticipate and

measure the potential compatibility between individuals thereby maximizing

the productivity. As there is no principle to evaluate partner compatibility,

earlier studies on pair compatibility suggested to form pairs based on various

personality factors (Katira et al. 2004). The failure rate related with pair

programming experiments can be reduced to a greater extent by formulating

an appropriate measure of compatibility.

58

4.3 GRAPH MATCHING APPROACH

 In this section the graph theory related definitions and

terminologies which help in modeling the pair programming problem using

graph matching concepts are discussed.

 A graph G = (V,E) is a mathematical structure consisting of two

sets V and E. The elements of V are called vertices or nodes and the elements

of E are called edges.

(Source : http://www.alberton.info)

Figure 4.1 Undirected graph and Directed graph

 An undirected graph G is defined by a set V(G) of elements called

vertices, a set E(G) of elements called edges, and a relation of incidence,

which associates with each edge an unordered pair of vertices called its end

vertices. An example is shown in Figure 4.1 (a) for an undirected graph and

Figure 4.1 (b) for a directed graph. There are 5 vertices or nodes in the graph,

numbered from 1 to 5.

(a) (b)

59

(Source : http://mathworld.wolfram.com/CompleteGraph.html)
Figure 4.2 Complete graphs

 A Complete graph is a simple graph such that every pair of vertices

is joined by an edge as shown in Figure 4.2. Any complete graph on n vertices

is denoted by Kn. A complete graph on n vertices is one in which an edge

is drawn from each vertex to every other vertex in the graph, resulting in a

total of edges.

(Source: http://www.multiwingspan.co.uk)
Figure 4.3 Weighted graph

60

(Source: https://en.wikipedia.org/wiki/Bipartite_graph)
Figure 4.4 Bipartite graph

 A weight is a numerical value, assigned as a label to a vertex or

edge of a graph. A weighted graph is a graph whose vertices or edges have

been assigned weights; more specifically, a vertex-weighted graph has

weights on its vertices and an edge-weighted graph has weights on its edges.

The weight of a subgraph is the sum of the weights of the vertices or edges

within that subgraph. If a real value is assigned to every edge of G, then G is

called a weighted graph as shown in Figure 4.3.

 Given a weighted graph, and a designated node S, we would like

to find a path of least total weight from S to each of the other vertices in the

graph. The total weight of a path is the sum of the weights of its edges. A

bipartite graph is a graph whose vertex set can be partitioned into two disjoint

sets U and V such that every edge connects a vertex in U to a vertex in V. An

example for bipartite graph is shown in Figure 4.4.

61

(a) (b)
(Source: http://www.slideshare.net/uyar/graphs-7802324)

Figure 4.5 Complete bipartite graphs

 A complete bipartite graph, denoted by is a bipartite graph

where the two partitions X and Y are of sizes m and n respectively and every

vertex in X is connected to every vertex in Y. In Figure 4.5 the examples are

shown for complete bipartite graphs denoted by K2,3 and K3,3.

 A matching M in a simple graph is a collection of mutually non

adjacent edges. The vertices incident to the edges of a matching M are

saturated by M; the others are unsaturated. A maximal matching in a graph is

a matching that cannot be enlarged by adding an edge. A maximum matching

is a matching of maximum number of edges among all matching’s in the

graph. Every maximum matching is maximal, but not the converse. A perfect

matching is a matching in which all the vertices of G are saturated. Maximum

Weighted Matching () of a weighted graph is a matching in which the

sum of the weights of the edges is maximum. Mathematically it can be

represented as,

 ()

where) indicates the weight of the edge e.

62

 All possible maximum weighted matching’s of a 4-vertex complete

weighted graph is shown in Figure 4.6.

Figure 4.6 Matching of a weighted complete graph

 In this graph, the match M1 is the compatibility between edge e1

vertices v1 and v4 and compatibility between the edge e6 vertices v2 and v3.

 Match M1 = sum of edge weights of {e1, e6} = 3

 Match M2 = sum of edge weights of {e2, e4} = 5

 Match M3 = sum of edge weights of {e3, e5} = 3

 Here the non adjacent edges are considered for matching according

to the Edmonds’ blossom algorithm. Match M2 is the compatibility between

edge e2, vertices v1 and v2 and the compatibility between edge e4 vertices

v3 and v4. Match M3 is the compatibility between the edge e3 vertices v1 and

v3 and the compatibility between edge e5 vertices v2 and v4. Since the

weight of match M2 is the maximum when compared with the weights of

63

other matches M1 and M3, we consider M2 for pair compatibility. M2 is

considered as the maximum weighted matching.

 The concept of graph matching is used in many industrial

applications. In industrial planning, a wide variety of assignments are

routinely made. For instance, the assignment of individual workers to tasks,

jobs to processors, etc., can be modeled using graph matching. In some

scenarios like man-machine assignment, the industry wishes to consider the

experience of the person in handling the machine. Weighted bipartite graphs

can be used to represent this situation. Various algorithms have already been

proposed for finding matching’s in general graphs. Variations of Edmonds’

Blossom and Hungarian algorithms are generally used for finding maximum

weighted matching in complete graphs and complete bipartite graphs

respectively. For more concepts on graph theory (West 2011) is a good

reference.

4.3.1 Edmonds’ Blossom Algorithm

 The blossom algorithm is an algorithm in graph theory for

constructing maximum matchings on graphs. The algorithm was developed

by Jack Edmonds in 1961 and published in 1965. Given a general graph

G = (V, E), the algorithm finds a matching M such that each vertex in V is

incident with at most one edge in M and |M| is maximized. The matching is

constructed by iteratively improving an initial empty matching along

augmenting paths in the graph. Unlike bipartite matching, the key new idea is

that an odd-length cycle in the graph (blossom) is contracted to a single

vertex, with the search continuing iteratively in the contracted graph.

64

4.3.1.1 Augmenting paths

 Given G = (V, E) and a matching M of G, a vertex v is exposed if

no edge of M is incident with v. A path in G is an alternating path, if its

edges are alternately not in M and in M (or in M and not in M). An

augmenting path P is an alternating path that starts and ends at two distinct

exposed vertices. A matching augmentation along an augmenting path P is

the operation of replacing M with a new matching

.

(Source : http://www.contrib.andrew.cmu.edu)
Figure 4.7 Match augmentation in Edmonds’ Blossom algorithm

 It may be proven that a matching M is maximum if and only if there

is no M-augmenting path in G. Hence, either a matching is maximum, or it

can be augmented. Thus, starting from an initial matching, we can compute a

maximum matching by augmenting the current matching with augmenting

65

paths as long as we can find them, and return whenever no augmenting paths

are left. We can formalize the algorithm as follows:

INPUT : Graph G, initial matching M on G

OUTPUT : maximum matching M* on G

A1 function find_maximum_matching(G, M) : M*

A2 P find_augmenting_path(G, M)

A3 if P is non-empty then

A4 return find_maximum_matching(G, augment M along

P)

A5 else

A6 return M

A7 end if

A8 end function

4.4 RELATED WORK

 A good deal of research has already been carried out on pair

programming from academic as well as industrial perspective. The recent

industrial case study (Bella et al. 2005) analyzed that the relationship between

pair programming and defect rate under various scenarios for a team of an

Italian company shows that pair programming appears to provide a

perceivable but small effect on defect reduction. However, their results also

66

indicate that the introduction of new defects tend to decrease when pair

programming is practiced.

 Salleh et al. (Salleh et al. 2011) presented a systematic literature

review of empirical studies that investigated factors affecting the

effectiveness of pair programming for Computer Science/Software

Engineering students. Their literature review listed 14 compatibility factors

like personality types, actual and perceived skill levels, gender,

communication skills, learning style, etc., that affect pair compatibility and/or

pair programming’s effectiveness as a pedagogical tool. In their study, skill

level was identified to be the most important factor amongst all and their

results showed that a pair works well when both students have similar

abilities and motivation to succeed in a course.

 On the contrary to other studies focusing on the effects of pair

programming on software quality and development time, the study by

Sillitti et al. (Sillitti et al. 2012) focuses on the effects that pair programming

has on developers’ attention and productivity. According to their study,

people working in pairs concentrate more on productive activities and they

engage themselves in significantly longer and uninterrupted working sessions;

they focus more on the assigned tasks and thereby the need for retrieving

information from sources other than the partner for example, using web is

also reduced.

 Chaparro et al. (Chaparro et al. 2005) employed various data

gathering techniques and analysed the reason for ineffectiveness of pair

programming. In their study, students’ skill levels and the programming tasks

are identified to play a major role in the effectiveness of pair programming

process. They also suggested that students should be matched with a partner

who has similar skill level and a novice student should always be paired with

67

a partner with higher skill level. Thus we find that many of the studies on pair

programming insist on skill level and compatibility for effective results.

4.5 METHODOLOGY

 Owing to the ever increasing needs for pair programming,

industries and academics use pair programming more frequently, but they

often find it hard to understand the underlying principles of forming pairs.

The success of pair programming is determined through the pairs’ success

which depends on how compatible they are with each other and how

effectively they can communicate and understand each other’s thoughts.

Incompatible pairs have less understanding and improper communication

between them. This leads to reduced performance, demotivation / frustration

and disengagement from work. The consequences of having incompatible

pairs also include delay in meeting deadlines, higher development time even

for a smaller module and poor quality work. So pair compatibility is indeed

essential for success of pair programming. A pair is said to be effective if they

can produce better performance which arises out of their compatibility.

Generally in the case of social and student networks, the most efficient

mechanism is to adopt a few psychological factors of human minds and a

measure of skill level.

 Here a novel method is proposed to measure the compatibility

between individuals taking into account their skill levels too. Let G be a

weighted graph formed by considering the students as vertices and the edge

weights represent the measured compatibility between the corresponding

pairs of individuals. The problem is to pair the students such that the overall

compatibility of pairs is maximized. So according to graph theory, the

problem is equivalent to finding maximum weighted matching in G. The

concepts of pair programming and graph matching restricts that a student can

have only one partner. Also since no student should be left out without a

68

partner, a perfect matching is required and to find one, the number of students

participating is taken to be even in number in all the experiments.

 The students were prepared for pair programming assignment by

conducting a briefing session on pair programming and they were instructed

that they will be doing their work in pairs on a working day. Since, all the

students have basic computer skills, we presume that there are no scheduling

difficulties as they are available during the working time. With the

assumptions that there is no gender discrimination; they were all interested in

pair programming and participants did not quit the work in between, all the

experiments were conducted as planned.

4.6 EXPERIMENTS AND RESULTS

 This work is a case study which is conducted to explore the

effectiveness of pairs using graph matching for compatible pairing of

students. The success of a pair is determined by the accurate output of the

program execution within the allotted time and the usage of effective coding

standards. Three experiments were conducted on a same batch of first year

students from the five year integrated M.Sc Theoretical Computer Science. 26

students volunteered to participate which led to 13 pairs working on a given

coding problem in Data Structures using C Programming language for each

experiment. The questions were given to them on all the three experiments

and were of equal complexity levels.

 All the experiments were allotted a maximum time of 140 minutes.

The first experiment comprised of pairs on their own choice. The pairs for the

second and third experiments were formed using graph matching method. In

the second experiment we have tested the students for compatibility without

considering their skill levels, whereas the skill levels of pairs were also taken

into account for the third experiment.

69

4.6.1 Self Chosen Pairs

 In the first experiment, the students were asked to pick partners of

their own choice with no constraints. Therefore students preferred to work

with their own friends. To evaluate the performance of pairs, Lines of Code

and time taken by each pair were analyzed and compared. Though lines of

code and time consumed do not have a direct impact on performance/outcome

but, they are in general important factors for determining productivity. The

result of the first experiment pairs with respect to these aspects is shown in

Figure 4.8 and Figure 4.9. In Figure 4.8 the pairs are sorted according to lines

of code is shown. In Figure 4.9 the time taken by the corresponding pairs in

the first experiment is shown.

Table 4.1 Lines of code and Time taken for Experiment 1

Pa Pairs
Lines of

Code
Time Taken
(In minutes)

Pair 1 70 140

Pair 2 75 140

Pair 3 81 140

Pair 4 85 140

Pair 5 110 130

Pair 6 113 130

Pair 7 135 125

Pair 8 135 130

Pair 9 140 120

Pair 10 142 130

Pair 11 143 140

Pair 12 160 120

Pair 13 180 110

70

Figure 4.8 Lines of code analysis with respect to experiment 1

Figure 4.9 Time Analysis for the pairs with respect to experiment 1

 In the experiment 1 four pairs namely, pair1, pair 2, pair 3 and

pair 4 were unsuccessful as shown in Figure 4.8, because they were unable to

complete the programming assignment successfully within the allotted time of

140 minutes. Figure 4.9 depicts the time taken by both the successful and

unsuccessful pairs. We can also infer that the time taken by unsuccessful pairs

71

is more when compared to that of successful pairs; however it need not be

true in general. Though unsuccessful pairs experienced some other benefits

with their partners, these pairs yielded ineffective outcomes as both partners

were found to be less competent. Table 4.1 shows the lines of code and time

taken for experiment 1.

4.6.2 Pairs chosen using weighted graph matching without

considering skill level

 Here, it is assumed that individuals participating in pair

programming experiment are of same experience levels and they have similar

skill levels as peer groups are only considered here. To obtain correct

information about each individual’s personal characteristics which is

necessary to assess the compatibility between individuals, every participant

was given a questionnaire prior to conducting the experiment 1. The

questionnaire consists of multiple choice questions to test the individual’s

skills, behaviors including working nature, decision making skills and

temperament. Generally, any number of questions can be asked with n

different options. Conventionally four options are preferred. A total of 15

questions were given with each question having 4 different options. The

answers to each question were fixed by assigning credits to every option to

the answer. The best option was given a credit 4, next best was given 3 and

then 2 and finally least option was given a credit 1. With a belief that students

assess themselves properly, every participant was assigned a score based on

his/her answers. The scores were calculated considering only the answers to

the questionnaire and no other additional factors were included. The student’s

answer to every question was cumulated to arrive at his/her final score.

 indicates the predefined value to the option j chosen as answer by the

student for the question i.

72

 Then his/her absolute score is computed using the formula as

shown in Equation (4.1).

4

1

,

creditstotal
answereachtoscoreofsumScore

i

ji
ij

k

i

PS
QS (4.1)

where “k” is the serial number of the student.

 From the absolute score, relative score to each individual is then

calculated using percentiles, to evaluate the relative standing of a student

amongst all students. With relative scoring, the batch performance was

improvised as a whole rather than each individual’s performance.

 Having computed the scores of every student “k”, the student

network was constructed as a weighted complete graph). The weight of

vertex k was assigned to be the score of kth student. With each vertex

having relative score, the edge weight was computed for every edge by taking

the average of its vertex weights. Suppose an edge e is incident on vertices v1

and v2, its weight is shown in Equation (4.2).

= () (4.2)

where indicates the weight (score) of the vertex(student) vi .

 These edge weights measure the level of compatibility between the

corresponding individuals, which is a critical element for deciding the

effectiveness of pairs. The graph with these calculated edge weights is then

fed to Edmond’s Blossom graph matching algorithm to find a maximum

weighted matching. The pairs which were formed as a result of the algorithm

are considered for the experiment 2.

73

Table 4.2 Lines of Code and Time taken for Experiment 2

Pa Pairs Lines of
Code

Time Taken
(In minutes)

Pair 1 60 120

Pair 2 110 125

Pair 3 112 120

Pair 4 113 135

Pair 5 120 125

Pair 6 125 118

Pair 7 128 125

Pair 8 130 130

Pair 9 135 120

Pair 10 139 130

Pair 11 142 130

Pair 12 145 120

Pair 13 149 117

Figure 4.10 Lines of Code analysis with respect to experiment 2

74

Figure 4.11 Time analysis for the pairs with respect to experiment 2

 The result of the second experiment pairs with respect to lines of

code and time taken to complete the assignment is shown in Figure 4.10 and

Figure 4.11. Notice that there is only one unsuccessful pair as indicated in the

Figure 4.10 because the pairs have been selected according to their skill level,

Figure 4.10 also indicates that the number of unsuccessful pairs has reduced

when compared to the first experiment. This is because of the fact that the

pairs have been formed based on the graph matching method. Table 4.2

shows the lines of code and time taken for experiment 2.

4.6.3 Pairs chosen using weighted graph matching considering skill

level

 In the previous two experiments, the skill levels of pairs was not

considered. But, a pair is successful in this kind of programming only if they

are paired by considering their skill levels too, as suggested by Chaparro et al.

(Chaparro et al. 2005). This was the reason for revamping the methodology

in forming pairs and a third experiment was conducted, in which the edge

weights incorporate the skill/knowledge level of the pairs. To arrive at the

75

perceived skill level of students, their lab marks, faculty rating and personal

rating of the students were also included. The faculty rating of each student

for C programming language and Data Structures were obtained from the

respective faculty. The skill level of kth student is then derived as shown

in Equation (4.3),

= L + L F + F + P + P (4.3)

where L and L represent the laboratory performance marks of the kth

student for C Language and Data structures respectively taken from the

semester examinations; F and F represent the scores given by the concerned

faculty for C Language and Data structures respectively; P and P represent

the self-evaluated scores given by the student for C Language and Data

structures respectively. For this experiment, the final score for kth student is

calculated by adding the skill level SLk from Equation (4.3) and QSk from

Equation (4.1).

= QS (4.4)

 To ensure that a novice is paired with a partner who has better

domain knowledge and with a view to make the overall performance better, a

different strategy in forming pairs was adopted. The student scores were

sorted in descending and the students were split into two groups A and B

according to the sorted scores. Group A included the first 13 students in the

sorted list and group B comprised the rest. This means that on average,

students in group A have higher skill levels when compared to students in

group B. Unlike the student network as the complete graph K26 in the second

experiment, here the network is a complete bipartite graph K13,13.

As in the second experiment, the weight of vertex k is the score of kth

student and the edge weights are calculated by averaging the corresponding

vertex weights. The bipartite graph structure restricts that a student from

76

group A can be paired only with a student from group B, ascertaining that at

least one among the pair has better skills in comparison with his/her

counterpart. This ensures that all pairs are balanced in terms of skill

level/domain knowledge. The bipartite graph with the newly computed edge

weights is then fed to Hungarian graph matching algorithm to find a

maximum weighted bipartite matching.

Table 4.3 Lines of Code and Time taken for Experiment 3

Pa Pairs Lines of
Code

Time Taken
(In minutes)

Pair 1 80 100

Pair 2 82 82

Pair 3 83 83

Pair 4 85 105

Pair 5 90 106

Pair 6 100 106

Pair 7 105 107

Pair 8 110 90

Pair 9 111 120

Pair 10 120 118

Pair 11 123 120

Pair 12 130 106

Pair 13 132 120

 The lines of code and time consumed by each of the pairs in the

third experiment are shown in Figure 4.12 and Figure 4.13 respectively.

77

Figure 4.12 Lines of Code analysis with respect to experiment 3

Figure 4.13 Time Analysis for the pairs with respect to experiment 3

 It is to be noticed that the lines of code and time taken by the new

pairs have considerably reduced and for this experiment, all pairs were

successful. This method of pairing is best suitable when novices are present

since it reduces the possibility of two beginners/proficient’s getting paired

together. Table 4.3 shows the lines of code and time taken for experiment 3.

78

4.7 RESULTS ANALYSIS AND DISCUSSION

 In this section, different results of all the three experiments were

compared and analysed in terms of Lines of Code and time consumed. Figure

4.14 and Figure 4.15 plot the graph of the average lines of code and average

time consumed by all pairs for the three experiments.

Figure 4.14 Average lines of code analysis for all three experiments

Figure 4.15 Time comparison Analysis for all three experiments

79

 From Figure 4.14, it can be seen that the average lines of code for

the second experiment is significantly lesser than that of the first experiment.

But the average lines of code for the third experiment are significantly lesser

when compared to the other two experiments. This is because in the second

experiment, the pairs are selected by the graph matching algorithm but

without considering their skill level and in the third experiment pairs are

selected by graph matching algorithm by considering their skill level.

 Also, Figure 4.15 depicts that the average time consumed by the

first experiment pairs to complete their programs, is higher than that of the

second and third experiment pairs. Of all the three experiments, the third

experiment has the least time. This is due to the fact that the pairs selected for

the third experiment were based on graph matching algorithm and their skill

level was also considered while selecting the pairs.

 Next the completion times of the pairs for the three experiments

were also analyzed. The three time intervals (in minutes) considered here are

80-100, 101-120 and 121-140. It can be observed that the third experiment

pairs have completed faster within 120 minutes, while many pairs have taken

up to 140 minutes during first and second experiments. Figure 4.16 compares

the number of pairs for each experiment and the time intervals for their

programming.

80

Figure 4.16 Time Analysis for the pairs in each of the experiments

 The results indicate that the second and third experiments showed

better performance than the first experiment. Especially, the third experiment

in which the computation of maximum weighted matching included skill

levels too, is experimentally found to produce fruitful outcome. This is due to

the fact that, the pairs were selected based on their skill level and due

weightage was given for the psychological factors to analyse the pair

compatibility between pairs. The psychological factors of the pairs were

analysed based on the scores obtained for the set of questions given in pair

programming questionnaire-A in section 4.8.

 After the completion of every experiment, feedback was obtained

from all the students for their experience in pair programming. A

questionnaire was distributed after each assignment was complete, to know

how they felt about their new partners and to know if it was productive to

them. Repeating the assessment of individuals was not done after this

questionnaire. Students felt that they were more compatible with their

partners of the third experiment than those of the previous experiments; their

discussions with their new partners were fruitful and it filled the holes in their

0

2

4

6

8

10

12

80 - 100 101 - 120 121 - 140

N
o.

 o
f

Pa
irs

Time Interval Scale in Minutes

Time Intervals vs. No. of Pairs

Experiment 1

Experiment 2

Experiment 3

81

subject knowledge. The latter feedback provides strong evidence that skill

level plays an important role in pair programming. They opined, pair

programming provided them mutual motivation and boosted their confidence

in completing the task successfully, as the partners can help each other when

required. They were even motivated to work in pairs again.

4.8 PAIR PROGRAMMING QUESTIONNAIRE – A

 The questionnaire set A used for conducting experiments is given

below. This questionnaire was distributed prior to the conduct of first

experiment and this is used to evaluate the value of QS . The weightage

value for each option is also given in the table 4.1 ranging from maximum

value of 4 to minimum value of 1.

S.No. Question with options

1 Do you know the domain of work?

 a) Yes b) No

2 If your answer is “Yes” to question number 1, how much do you
think is your competency level?

a) High b) Average c) Low d) Don’t Know

S.No. Question with options

1 Assume you are working in a pair, you find a mistake in your
partner’s code. How will you react to this situation?
a) You will intimate your partner immediately and guide him/her

correctly.
b) You will wait until your partner finds the mistake by

himself/herself.
c) You will not bother about the mistake as you will rectify it

during your turn.
d) You will get your partner’s reason for such a work, before

pointing it as a mistake.

82

S.No. Question with options

2 What will you do if your partner is unable to find a solution for a
problem?
a) Guide your partner to use resources like internet or books to find

a solution.
b) Ask your partner to find the solution by himself/herself.
c) You will leave the problem as it is, because of other important

activities.
d) You rely on your own experience to find potential solutions to a

problem and so you do not mind much even if your partner is
not able to do.

3 You need to make an immediate decision. What will you do?
a) You will consult your partner, discuss and then take a decision.
b) You feel time will be wasted in unnecessary arguments during

decision making and when making a decision, you trust your
inner feelings and reactions, so you take the decision on your
own.

c) You feel that your partner is not capable of deciding, so you will
make the decision by yourself.

d) You avoid making important decisions until the pressure is on,
so postpone it for a while.

4 How will you handle a stressful situation?
a) You will seek the help of humour to reduce the tension around.
b) You will be involved in a direct communication with your

partner.
c) You will lose patience with the need to get your partner

involved in discussion.
d) You will discuss to outsiders about the problems that you face

in the team.

5 What will you do when conflicts arise between you and your
partner?

a) You will maintain silence for a while and avoid the arguments
with your partner.

83

S.No. Question with options
b) You will stress for an honest discussion of the differences and

the reasons for conflicts.
c) You will explain and provide reasons to prove why one side is

correct and the other is incorrect.
d) You will try to break the tension with a supportive or humorous

remark.

6 What will you do when things go wrong on the team?
a) You will emphasize on listening, feedback, and participation.
b) You will arrange for a candid discussion of your problems.
c) You will work hard to provide more and better information.
d) You will suggest revisiting your basic mission and start

reworking on it.

7 Among the following, which do you think is difficult to do and that
could put you in a troublesome situation?
a) Questioning some aspect of your partner’s work.
b) Pushing the team to set higher performance standards.
c) Working outside your defined role or job area.
d) Providing your partner with feedback on their behaviour as a

team.

8 Assume you and your partner know the domain of work and both
are good at it. Which among the following, you think is required
for pair problem solving?
a) Co-ordination and co-operation by both members.
b) High-level listening skills to absorb significant information.
c) A willingness to interrogate your partner with tough questions

during work.
d) Acquisition of good, solid data that defines the problem well.

9 Suppose your partner doesn’t have any knowledge in the domain in
which you are going to work as a pair, what will you do?

a) You will not accept that assignment.
b) You will try to educate your partner by mutual reading.

84

S.No. Question with options
c) You will do the entire work by yourself and ask your partner to

absorb what you are doing and thereby make him/her learn the
area of work.

d) You will give some time for your partner to learn and once
he/she finishes, you both will commence the work together.

10 When your partner goes wrong at some point during the work, what
will you do?
a) You will criticize your partner so that he/she can learn from it.
b) You will ignore your partner.
c) You will specify the resources for your partner to learn.
d) You will educate him by asking more specific questions and

giving suggestions.
11 Suppose you find that your partner is more knowledgeable than

you, what will you do?
a) You will let your partner do the work and your involvement will

be less.
b) You will frankly admit to your partner and ask him/her to teach

you.
c) You will get some time for you to learn on your own.
d) You will not take up such a project.

12 What will you do when pairing up with a new partner for a work?
a) You will try to meet and get to know the person.
b) You will ask direct questions about the goals and methods that

you both need to work on.
c) You will talk to your partner to know what is expected of you.
d) You will engage in a discussion with your partner for clarity

about your basic mission.
13 What according to you is the basis for the team decision?

a) The team’s mission and goals.
b) A consensus of team members.
c) An open and candid assessment of the issues.
d) The weight of the evidence such as available information,

statistics, etc.

85

S.No. Question with options

14 How will you deal if you feel that your partner is too rigid?
a) You will try to convince him/her with your own ideas.
b) You will just ignore your partner for the time being and

concentrate on your work.
c) You will inform your superior for a better replacement.
d) You will tell him frankly that he/she is going in a wrong

direction.
15 If your partner keeps on finding faults with you and criticizes your

approach, how will you react?
a) You will try to explain and convince him/her about the

effectiveness of your logic/approach.
b) You will ignore his/her criticism as you firmly know your

approach is right and you will not waste time on proving your
point.

c) You will inform your superior about your partner’s attitude.
d) You will tell him/her frankly that he/she is not encouraging.

Table 4.4 Answer Credits: Weightage for options in the order 4 3 2 1

Question Number Weightage 4 3 2 1
1 d a b c
2 a d b c
3 a b d c
4 b a d c
5 b c d a
6 b a c d
7 c b d a
8 a c b d
9 b d c a

10 d c a b
11 c b a d
12 d b a c
13 c b a d
14 a d b c
15 a d b c

86

4.9 PAIR PROGRAMMING QUESTIONNAIRE – B

 The questionnaire given after each experiment for feedback survey

used for conducting experiments is given below.

Sl.No. Question

1 Did your partner cooperatively follow the pair programming model

(rotating roles of driver and navigator, questioning and making

observations as the navigator)?

2 Did your partner contribute fully, fairly and actively, to the best of

his or her ability, to the completion of the lab assignment?

3 Was your partner's participation, professional and cooperative

overall?

4 If given another opportunity, would you like to work in pairs again?

5 Did you find social difficulties with your companion?

6 Do you think collaboration with your partner gives you more

confidence in solving programming problems?

7 Do you this collaboration in the experiment will be more effective

if it has more than two members?

8 Do you think pair programming process enriches your knowledge?

9 Assess the technical competency of your partner when compared

to your competency :

a) better b) about the same c) weaker

10 Assess how compatible you and your partner were

a) Very much b) Good c) Not much.

87

4.10 CONCLUSION

 Pair programming is definitely one of the best mutual teaching-

learning methodologies when the pairs are compatible and has the drive to

achieve maximum quality and productivity. The feedback survey conducted

during our case study revealed that pairs of the third experiment were more

comfortable and enthusiastic, which favors the significance of skill level in

pairing. It was evident from the third experiment that the pairs were more

compatible and they produced promising results. Essentially the success of

pair programming depends on both the complexity of programming task and

compatibility of the pairs. Only when the pairs are compatible with each

other, the working environment will be more interesting for the pairs, which

will improve their productivity. It will be a win-win strategy for both the

partners where the job is expected to be completed successfully.

 This work on pair programming using graph matching can be

extended to distributed pair programming environment where the pairs will be

geographically separated and the communication between the pairs can be

through text chatting, voice or video conferencing. Moreover there is scope

for enhancing the measure of compatibility by encompassing many other

related factors.

88

CHAPTER 5

ENHANCING LEARNING EXPERIENCE OF E-LEARNERS

IN LABORATORY COURSES USING PAIR

PROGRAMMING

 E-learning is a learning by utilizing electronic technologies to

access educational curriculum outside of a traditional classroom. In most

cases, it refers to a course, program or degree delivered completely online.

5.1 E-LEARNING

 E-learning courses are the courses that are specifically delivered via

the internet to somewhere other than the classroom where the professor is

teaching. It is not a course delivered via a digital video disk (DVD), video

tape or over a television channel. It is interactive in that one can also

communicate with their teachers, professors or other students in their class.

Sometimes it is delivered live, where one can interact in real time and

sometimes it is a lecture that has been prerecorded. There is always a teacher

or professor interacting /communicating with the e-learner and grades his/her

participation by evaluating the assignments and tests. E-learning has been

proven to be a successful method of training and education and is becoming a

way of life for many students across the globe.

89

5.2 E-LEARNING IN LABORATORY COURSES

 Laboratory courses constitute one of the core competencies that

graduates from information systems discipline are expected to possess.

Laboratory courses in e-learning are just a curricular formality without

bothering about the learning experience. Lot of practice is required for

e-learners for acquiring a good learning experience, for which motivation is

an essential factor. Research has suggested that the lack of a formalized

structure for laboratory courses may be one of the factors responsible for

learners’ negative impressions of e-learning and also for the high failure rate

in e-learning. Ability to work in teams has been considered one of the

most important learning outcomes of the laboratory courses.

 This study highlights the importance of laboratory courses in

e-learning and investigates whether the use of pair programming in laboratory

courses would enhance the learning experience of e-learners. The final

objective is to provide new learning experience to motivate e-learners and

present laboratory courses as an easy and attractive challenge using pair

programming. Experiments were conducted in Data Structures, problem

solving and C programming courses. Results indicate that the learning

experience of both the learners and teachers were improved in laboratory

course and also showed an improvement in success rate.

5.3 RELATED WORK

 In most of the e-learning systems, theory is given more importance.

Practical lab assignments is not given in most of the e-learning systems.

Learners of information systems courses cannot be trained with focus on

theory only which is going to be forgotten with passage of time (Van Der

Vyver& Lane 2003). Good programming skills are one of the core

competencies that information system learners are expected to develop.

90

However, learners and teachers agree that learning laboratory courses is a

hard through e-learning. Learners need to be adequately motivated in order to

learn programming in a successful and effective manner. Learners will be

motivated when they interact with other learners and/or teacher (Furberg et.

al. 2013).

 The main issue which may exacerbate e-learners’ difficulties with

laboratory courses is the lack of a formalised environment for collaborative

peer learning (Preston 2005). Some of the challenges that e-learners face in

laboratory courses may be overcome by allowing learners to collaborate with

their peers. The pedagogical advantages of learner interaction in collaborative

construction of knowledge are grounded in the social constructivist

perspective of learning. Based on the constructivist pedagogical approach,

actual learning takes place when students actively construct their

knowledge through social interactions with their peers (Van Der Vyver

2003). Knowledge is discovered and constructed through communication and

collective sense making. Collaborative learning benefits educators in

computing domain. Engagement in collaborative activities causes individuals

to master something that they could not do before the collaboration.

Investigation of how collaborative learning can be used to enhance learning

experience of e-learners in laboratory courses is the main objective. In

e-learning, learners are located in geographically different locations; the

current study employs a distributed collaborative programming technique

referred to as distributed pair programming.

 Distributed pair programming is a novel and successful

collaborative paradigm used in software industry (Salleh et al. 2011). The

idea is that two programmers work collaboratively on the same program from

the different locations. One programmer is designated as the ‘driver’ and has

control of the input devices. The other programmer is designated as the

91

‘navigator’ and has the responsibility of reviewing the code that has been

typed to check for deficiencies, such as erroneous syntax and logic,

misspellings and design issues (Braught, Wahls & Eby 2011). The navigator

continuously examines the work of the driver, thinking of alternatives and

asking questions. The driver and the navigator change roles frequently and

different pairs are formed to facilitate the spread of information through an

organisation.

 It is the opinion of the industry experts that programmers working

in pairs produce shorter programs with better design and fewer bugs than

those working alone (Vanhanen & Lassenius 2007). This collaborative

technique has also been successfully applied to the teaching of computer

programming for beginners in classroom and a wide range of benefits have

been reported, such as improved quality of code, decreased time to complete,

improved understanding of the programming process, enhanced

communication skills and enhanced learning (Salleh et al. 2011;Williams &

Upchurch 2001). In pair programming, one learner will follow another learner

and will try to imitate. One learner will be the camaraderie of another learner.

It is found that mathematical logic skills were enhanced when pair

programming practice was followed. It is also proved that collaborative

learning enhanced student experience in producing Wiki websites (Tsai et. al.

2011). Pair Programming had positive effects on student engagement and

performance within computer science lectures (Maguire & Maguire 2013).

5.4 THE INTRICACIES OF LEARNING LABORATORY

COURSES IN E-LEARNING ENVIRONMENT

 Computer programming laboratory courses may be viewed as a

method for some problem solving. Knowledge transfer is expected to be

easier if the prior knowledge and/or experience of the learners are similar to

92

the knowledge transfer being done. Programming laboratory courses are

greatly enhanced through learner-learner interaction. Where there is problem

in this knowledge transfer such as an error which the learner cannot explain,

overcoming that problem is faster through minimised distance between

teaching and learning (Denner et. al. 2014). Laboratory courses are not

similar to other courses. There is some uniqueness to laboratory courses in e-

learning that must be considered when one contemplates an ideal environment

for learning programming courses. Teaching and learning programming

courses have their intricacies as well as problems not fully overcome (Carver

et. al. 2007).

 Online learning has major benefits but when programming is taught

online, another set of concerns must be considered. Additionally the benefits

derived from an online environment for different courses differ. International

Data Corporation reports that enrolments in e-learning courses are growing at

33% a year and will continue to climb. Most of the e-learning systems

provide Virtual Learning Environment (VLE) and Integrated Development

Environment (IDE) to offer laboratory courses. There are new ways in

learning programming language as such using virtual learning

environments, evolving programming environments and software programs

and applications.

 The technology exists for this application providing for

computer-based instruction or asynchronous and synchronous learning

networks. Virtual Learning Environment (VLE) is a set of teaching and

learning tools intended to develop a student's learning capability via

computers and the Internet in the learning process (Rosenberg, 2001).

Learners with low motivation or bad study habits may fall behind.

93

5.4.1 Research Overview and Hypothesis

 Much of the research on distributed pair programming as a

pedagogical technique has focused on the teaching of introductory

programming courses to beginners, with fewer studies investigating its

applicability for expert programmers. Also, while there is a growing body of

research in the area, more studies have focused on pair formation and its

effectiveness. The outcomes of adopting a collaborative pair programming

paradigm for enhancing learning experience of e-learners in laboratory

courses is described here.

 Comparison is done with the learning efficacy of e-learners in

laboratory courses with pair programming and without pair programming.

The continuity of the learner cohort permits analysis of various outcomes of

the pedagogical intervention, such as learning experience and efficacy. Thus,

the following hypotheses are formulated about the e-learners in laboratory

courses using pair programming in the improvement of learning experience

and efficacy:

H1 : The e-learners who use pair programming will have better

learning experience than those who do not use it.

H2 : The e-learners who use pair programming in laboratory courses

will obtain higher grades than those learners who do not use it.

H3 : To establish whether learners benefit from a peer programming

intervention in terms of their academic performance in both

continuous assessment and examination results,

H4 : Dropout in e-learning will be decreased because of the

satisfaction level of e-learners.

94

5.4.2 Methodology

 Experiments were conducted with the e-learners of our e-learning

system taking Data Structures laboratory and problem solving and C

programming laboratory courses. These two laboratory courses are offered at

both UG and PG level in science and engineering stream. Table 5.1 shows the

total participants and the same is shown as chart in Figure 5.1.

Table 5.1 Experimental Analysis

Name of the

Laboratory Course

Gender Stream

Total
Boys Girls

Science Engineering

CS Non-CS CS Non-CS

UG Level

Problem Solving and
C programming Lab

180 114 74 47 116 57 294

Data Structures Lab 152 97 87 30 91 41 249

PG Level

Problem Solving and
C Programming Lab

45 92 58 19 43 17 137

Data Structures Lab 41 67 53 21 18 16 108

Figure 5.1 Total number of participants in the experiment

180

114

74

47

116

57

294

152

97

87

30

91

41

249

45

92

58

19

43

17

137

41

67

53

21

18

16

108

CS

Non-CS

CS

Non-CS

Bo
ys

Gi
rls

Sc
ie

nc
e

En
gi

ne
er

in
g

Ge
nd

er
St

re
am

To
ta

l

UG Level - C Lab

UG Level - DS Lab

PG Level - C Lab

PG Level- DS Lab

95

5.4.3 Experimental Design

 A quasi-experimental design was employed with discipline of

study, level of study and gender as the key independent variables. Students’

performance in lab examination was the key dependent variable, but measures

of programming confidence, perceptions of the pair programming

intervention, dropouts were also examined.

5.4.4 Experimental Procedure

 The experiment was conducted in an educational institution.

Students’ motivation, learning experience and satisfaction were analysed by

means of observation and satisfaction questionnaires. In addition it was

necessary to analyse the effects of the system on students’ academic outcomes

and dropout of students. For this, the experimental research method was

applied (Oncu & Cakir 2011) and experimental and control groups were

established in order to identify a relationship between variables. In order to

evaluate the experience all students took the two courses during the academic

year 2013–2014 were considered as belonging to the experimental group.

Their academic results and dropouts would then be compared with those

obtained by the students taking the same courses during the next academic

year. The following principles were established:

 A total of 788 students with different gender who were

enrolled in the two lab courses in UG / PG level, participated

in the experiment.

 Necessary training was provided to the students to use

e-learning system.

96

5.4.5 Instruments and data collection

 Two instruments were used in this study: a) the students’ final

examination grades in the courses for both academic years, and b) a survey,

which measures students’ satisfaction with their learning experience using the

system. Specifically, the survey was composed of three different parts:

 Personal data for statistics: age, gender, computer skills.

 Five-score Likert-type scale items, which ranged from

“Strongly agree”, “Agree”, “Neutral”, “Disagree” and

“Strongly disagree”, with a score ranging from 5 to 1

respectively for analysing the level of satisfaction.

 Yes/no items for assessing both the quality of the problems

posed and the functionality of the on-line Judge.

 Data from the survey was collected on-line when the courses

finished. The survey was completed by all the students. The data collected on

students’ performance which was the final examination grades were analysed

for group comparison using the Student T-Test. This statistical measure

indicates whether the means of two groups are statistically different from each

other in order to be able to compare them. In addition, in order to check

whether students’ satisfaction differed according to gender, subject of study

and UG/PG level and to investigate whether there was any interaction among

these variables, a two-way analysis of variance (ANOVA) was also

conducted.

97

5.5 RESULTS AND DISCUSSION

 In this section the results are analyzed and discussed to investigate

whether the e-learning process could be improved using the pair

programming technique.

5.5.1 Comparisons between time spent on learning and academic

performance

 Table 5.2 outlines the overall Mean and Standard Deviation (SD) of

the scores for total time spent on learning, and final assessment across the two

academic years. A series of dependent T-tests revealed a significant

difference between the two groups on any of these measures (p > 0.05).

Table 5.2 Mean, Standard Deviation (SD) and t test of the scores for
total time spent on E-learning and final assessment mark
across the two academic years.

Academic year

2013 - 2014

(without pair programming)

Academic year

2014 – 2015

(with pair programming)

t test

Mean SD Mean SD T P

Total time spent
on the system

162.45 2.0256 276.87 0.819 2.017 0.030

Final exam result 52.59% 1.383 87.37% 0.753 2.142 0.025

 A sample of 788 students in the academic year 2013-2014 was

taken for the experiment and an analysis was done on the total time spent by

the students on the system. The average time spent by the students in the

academic year 2013 – 2014, without pair programming was 162.45 hours and

average time spent by the same set of students in the academic year 2014-

2015 with pair programming was 276.87 hours.

98

 The final examination was conducted and it is observed that the

average mark scored by the students was 52.59% with a standard deviation of

1.383. This is in the case of students in the academic year 2013-2014, where

pair programming was not employed for the e-learning system. The average

mark scored by students in the final examination in the academic year 2014-

2015, where pair programming was employed is 87.37% with a standard

deviation of 0.753.

 As the sample taken was dependent, we consider the student t test

to test the hypothesis .

H0 : The e-learning was effective when it is employed with pair

programming during the academic year 2014-2015.

H1 : The e-learning was not effective when pair programming was

not employed during the academic year 2013-2014.

 From the statistical analysis, it is observed that there is an increase

in the average marks and a decrease in standard deviation when we compare

with the academic year 2013-14 without pair programming and with that of

academic year 2014-15 with pair programming. The computed P values for

total time spent on the system and for final exam result were observed to be

0.030 and 0.025 respectively which are less than P value where P=0.05

(Level of Significance). Hence H0 is accepted.

99

Figure 5.2 Time comparison Analysis on learning and academic
performance

 An improvement in the final score can be observed when pair

programming is applied to learning programming using e-learning.

According to the results in Figure 5.2, students who used pair programming

achieved significantly better academic outcomes than those who did not use it

across all courses. This result also shows that students are more interested in

spending more time in learning. This result indicates that the hypothesis H1 is

supported. The trend, as seen in Table 5.3, clearly indicates that as the

semester progressed, the students showed more interest in learning

programming and the dropout rate is reduced. This also shows that for

students having no programming background, the maximum learning

experience came from the lab work. By the end of the semester, all students

performed well in the final examinations.

5.5.2 Comparisons between dropout rate and failure rate

 The overall failure rate and dropout rate across the two academic

years is shown in Table 5.3. Failure rate is the average number of students

who failed in the final examination. Dropout rate is the average number of

students who attended the course and did not appear for the final examination.

0

50

100

150

200

250

300

Total time spent on the
system

Final Exam result

Sc
or

e Academic year 2013-2014
(without pair programming)

Academic year 2014-2015
(with pair programming)

100

 We observe that the failure rate in case of the students in academic

year 2013-2014 where pair programming is not employed (0.317), is more

than that of the failure rate of students in the academic year 2014-2015, where

pair programming was employed (0.048). The dropout rate is also more

(0.108) where pair programming was not employed than that of the students

in the academic year 2014-2015 where pair programming was employed

(0.019).

Table-5.3 Overall failure rate and dropout rate across the two academic
 years

Academic year

2013 - 2014

(without pair programming)

Academic year

2014 – 2015

(with pair programming)

Failure rate 0.317 0.048

Dropout rate 0.108 0.019

Figure 5.3 Overall failure rate and dropout rate across the two
academic years

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Failure rate Dropout rate

Sc
or

e Academic year 2013-2014
(without pair programming)

Academic year 2014-2015
(with pair programming)

101

 The major problem in e-learning is the lack of confident and

motivation in learning. It can be observed that when pair programming is

applied to learning programming laboratory courses in e-learning the overall

failure rate and dropout rate is significantly reduced. According to the results

in Figure 5.3, learners who used pair programming are confident in

completing the course successfully. This gives a positive sign for the

universities and organizations that uses e-learning system.

5.5.3 Analysis of the satisfaction of students

 In this section we analyse the students’ degree of satisfaction with

the use of pair programming in learning programming in e-learning system

based on the survey data. The purpose of this analysis is to validate the

usefulness of the system, since several studies (Donohue & Wong, 1997;

Levy, 2007) suggest that students’ satisfaction and motivation are important

factors in measuring the success or effectiveness of the e-learning process.

The analysis of results is done in general terms and also answering the

research question and testing the hypotheses formulated.

 Once the results of the surveys were available, their reliability was

analysed. Cronbach’s alpha was tested and the calculated alpha value for the

learning experience of e-learners in programming laboratory courses was

0.95, indicating very high reliability (Straub 1989). In general terms, the

survey data shows the learning experience was evaluated positively by

students. Figure 5.4 summarises the survey results for each course in UG

level, where bars represent the average score assigned to each item (5 being

the maximum score). Figure 5.5 summarises the survey results for each

course in PG level. It is also clear that the students think that it helped to

achieve academic excellence in learning goal. Most students reported a high

learning experience with the pair programming.

102

Figure 5.4 Survey results for UG students

 In Figure 5.4 the index 1 in the horizontal axis represents

Satisfaction Level of students in the e-learning system, index 2 represents,

Importance of Lab courses in e-learning environment, index 3 represents

participation in learning, index 4 represents Involvement in learning, index 5

represents Improvement in academic performance, index 6 represents,

enabled to attain meaningful learning goal and index 7 represents Confidence

in subject.

 In Figure 5.5 the index 1 in the horizontal axis represents

Satisfaction Level of students in the e-learning system, index 2 represents,

Importance of Lab courses in e-learning environment, index 3 represents

participation in learning, index 4 represents Involvement in learning, index 5

represents Improvement in academic performance, index 6 represents,

enabled to attain meaningful learning goal and index 7 represents Confidence

in subject.

4.5 4.8

4 3.82
4.3 4.35 4.284.25

4.46

3.52 3.71
3.93

4.25 4.1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7

Sc
or

e

UG - C Programming UG - Data Structures

103

Figure 5.5 Survey results for PG students

Table 5.4 Mean and Standard Deviation (SD) of Learner’s opinions
regarding learning experience

Survey items regarding learners’ learning
experience

Mean SD

Satisfaction Level 4.301 0.725

Importance of Lab courses in E-learning environment 4.524 0.779

Participation in learning 3.828 1.018

Involvement in learning 3.75 0.952

Improvement in academic performance 4.103 0.871

Enabled to attain meaningful learning goal 4.271 0.729

Confidence in subject 4.132 0.785

4.32
4.46

3.9
3.65

4.15 4.18 4.084.131
4.4

3.9
3.76

4.02
4.28

4.071

0

1

2

3

4

5

1 2 3 4 5 6 7

Sc
or

e

PG - C Programming PG - Data Structures

104

 Table 5.4 shows a more detailed statistical study (with the mean

and the standard deviation) of the different items in the opinion survey. The

average value of scores obtained for the satisfaction level of students in the

E-learning system employed with pair programming is 4.301 with a standard

deviation of 0.725. When the students were asked about the importance of lab

courses in e-learning environment, the average score was 4.524 with a

standard deviation of 0.7779. It indicates that majority of students felt that

lab courses in e-learning environment employed with pair programming was

more effective than compared with a e-learning system without pair

programming. The average score for students participation in learning, was

3.828 with a standard deviation of 1.018. The average score for involvement

in learning, the average score was 3.75 with a standard deviation of 0.952.

The average score for improvement in academic performance was 4.103 with

a standard deviation of 0.871. When students were asked whether the e-

learning system employed with pair programming enabled them to attain

meaningful learning goal, the average score was 4.271 with a standard

deviation of 0.729. The average score for gaining confidence in subject was

4.132 with a standard deviation of 0.785.

 The results indicate that the satisfaction level of the students and

learning experience in laboratory courses in e-learning environment that uses

pair programming was very effective.

Table 5.5. Two-way ANOVA for the learner’s satisfaction

 Sum of
squares

Degrees of
freedom

Mean
square F value p value

Gender 4.919 1 4.919 4.88 0.037
Level of Study 3.634 1 1.817 1.8 0.184
Gender x Level of Study 0.378 1 0.189 0.19 0.828
Error 28.229 785 1.008

Total 37.159 788

105

 Finally, the different hypotheses proposed about the relationship

between the level of satisfaction and gender and level of study had to be

validated. Since two factors namely, Gender and Level of Study were

considered for the hypotheses, two way ANOVA table was considered for the

statistical analysis.

H0 : No significant difference in the learning experience with

respect to gender

H1 : There is a significant difference in the learning experience with

respect to gender.

H3 : There is no significant difference in the learning experience

with respect to level of study

H4 : There is a significant difference in the learning experience with

respect to level of study.

H5 : There is no significant difference in the learning experience

with respect to gender and level of study considered together..

H6 : There is a significant difference in the learning experience with

respect to gender and level of study considered together.

 Results of Table 5.5 indicate that students’ learning experience was

not different in relation to gender (F=4.88, p> 0.05). Hence H0 is accepted.

 There is a significant difference in the learning experience with

relation to level of study (F = 1.8, p > 0.05) or the interaction of both

(F = 0.19, p > 0.05). Hence H3 and H5 is accepted in both of these cases.

106

 Based on the results shown in Table 5.4 and the responses and

statements of the learners, some of the evident advantages of pair

programming that we could bring out effectively in our e-learning laboratory

course were:

Collaboration and confident building: Studies have shown that pair

programming creates an environment conducive to more advanced, active

learning and social interaction, leading to students being less frustrated, more

confident, and more interested in IT (McDowell et. al. 2006). Students who

work in pairs tend to produce programs of higher quality and have

higher course passing rates (Nagappan et. al. 2003) even when students

pair program in a distributed manner. It has improved the team work

quality among learners. Learners feel the fact that paired programmers were

more comfortable in clearing their doubts with their partners. When they

worked in pair, learners showed the confidence in learning the subject. They

were able to state when something was right and the ability to admit when

something was wrong. Another advantage that was found in the students’

responses was that paired learners developed the tendency to work together

even outside the class.

Learning efficacy: According to (Bevan et al. 2002), pairs spend less time

working on assignments than individuals. In our experiment also

inexperienced pair programmers could produce code of the same quality in

the same time as experienced-solo programmers. Although paired

programmers had to write more code, (individual and combined tasks), they

seldom took more than an hour to complete the task. This happened because

when students attacked the combined task, the students working in pairs could

work out the logic much easily and in less time as they had already grasped

the concept while working on the individual tasks.

107

Skill development: Collaborative programmers talked, discussed, and argued

more than the individual programmers. They had the additional and increased

opportunity to learn by watching how their partners approach a task, how they

use programming language features, and how they use the development tools

(Williams et al. 2000). They had the opportunity to better understand

someone else’s view by understanding how an issue looks from their partner’s

perspective. At such times, drawing from each person’s unique talents and

experience, a process known as ‘pair brainstorming’ occurs resulting in highly

effective problem solving. The simple act of explaining an issue often leads to

the solution faster.

Quality in learning: Knowledge is constantly shared between pairs (Jason,

2004). Though no specific measure were made about program defects, the

instructors felt that compared to earlier batches when such a pairing was not

tried out, the quality of the programs produced by learners improved

significantly.

5.1 CONCLUSION

 While there is much research to suggest benefits of pair

programming (McDowell et al. 2003 ;Preston 2005;Salleh et al.

2011;Williams & Upchurch 2001) the current study is focused on using pair

programming for laboratory courses in e-learning. This chapter reports on a

study using the pair programming for the programming laboratory courses in

e-learning teaching-learning process in four laboratory courses offered at UG

and PG level. This approach has resulted in benefits such as enhancement of

problem solving skills, efficiency, quality, trust, and teamwork skills. It has

been also observed that paired laboratory experience is especially

advantageous to e-learners. A hidden advantage that was evident from the

learners’ responses was that learners were motivated to work collaboratively

even for other tasks.

108

 Firstly, learners like this approach since they regard it as useful,

facilitating the learning process, enabling to attain the learning goal and good

learning experience. Moreover, the results of this study indicate that the use

of pair programming in e-learning has important effects on the learners’

academic outcomes and also the dropout rate is also reduced. The learners

were motivated and involved in laboratory courses that created a confident in

them. The learners obtained better final grades. Therefore, the results hereby

presented suggest that this system can support effective learning strategies for

laboratory courses in e-learning. The research showed several benefits of

using pair programming in laboratory courses in e-learning such as enhanced

learning, greater confidence in work quality, higher problem solving skills,

enhanced interaction skills, and improved team building skills. The result also

shows that e-learners had a good learning experience. The study also

indicated several areas for future research.

 Future studies can examine the effects of pair forming and

automatic formation of pairs. Future studies can examine the use of pair

programming in Non-Computer Science curriculum.

109

CHAPTER 6

PAIR RECOMMENDER SYSTEM : AN ASSOCIATION

RULE BASED APPROACH

 A pair recommender system based on association rule mining

approach is devised. In Data mining, Association Rule Mining (ARM) is a

technique to discover frequent patterns, associations and correlations among

item-sets in data repositories. Association among programmers are found

using association rule mining which measures the pair compatibility between

the programmers.

6.1 INTRODUCTION

 ARM and Apriori algorithm to solve ARM problems was

introduced by (Agarwal et al. 1993). Association rules are used in many areas

like market basket analysis, social networks, stock market etc. Here we use

association rules to discover compatibility between pairs. Pair compatibility is

influenced by various parameters like skill level, technical competence,

designation, experience, personality interests, time management, learning

style and self esteem.

 A database in which an association rule is to be found is viewed as

a set of tuples. In market basket analysis a tuple could be {bread, butter, jam},

which is the list of items purchased by a customer. Association rules are

discovered based on these tuples and it represents a set of items that are

purchased together. For example the association rule {bread} {butter,jam}

110

means that whenever a customer purchases bread he/she will purchase both

butter and jam in the same transaction. In the pair compatibility context, each

tuple represents a parameter and the list of programmers satisfying the

parameter. For example, the tuple {A,B,C} may be the list of programmers

having the skill of developing programs using java programming language.

Each tuple in the database represents a parameter with the list of programmers

satisfying the same. An association rule found on this dataset may be of the

form {A} {B,C} which means the programmer A can be paired with

programmer B as well as with programmer C.

 Experiments were conducted by selecting the pairs from the

recommendation based on association rule and for solo programmers. For the

elective course “Semantic Web”, students have to develop an application

identified as a package. They have to do two packages identified as package1

and package2 and initially package1 was given to the selected pairs chosen

based on association rule and it was evaluated. Again package2 was given by

changing the pairs selected from the recommendation based on association

rule. The results show that the productivity was almost the same for the two

packages. Again package1 was given to the solo programmers and evaluated.

Experimental results show that there is 23% increase in LOC and 70% in time

when compared with pair programming of package1 and there was an

increase of 32% in LOC and 53% in time when compared with pair

programming of package2. The main advantage of the proposed method is

recommendation of more than one pair is possible. This gives more freedom

in choosing the pairs based on the complexity of the problem. Also, if a pair

breaks due to unforeseen reasons the project can be still continued with next

pair. This ensures the completion of the project.

111

6.2 RELATED WORK

 The major factors to be considered in pair programming are product

quality and productivity rate. The current research is focusing on influence

of these factors on pair compatibility. The impact of pair compatibility was

studied by (Katira et al. 2004), in which, they observed that the pairs with

same skill had significant influence on pair compatibility. Further they also

studied the impact of personality types, self-esteem and technical competence.

In their improved work they analysed the impact of gender and ethnicity.

Finally they conclude that pairs with same skill are compatible when

compared with other factors. (Laurie Williams et al. 2003), extended this

work and considered additional factors like time management, learning style

and work ethic. They conclude that students prefer to pair with someone they

perceive to be of similar technical competence. Their results show that pairing

specific learning style, yields very compatible pairs, potentially because of

their ability to complement each other’s expertise. They further conclude that

pairing students with strongly dissimilar work ethics will more likely yield to

incompatible pairs.

 Individual programming abilities are measured by assessment

strategies framed by (Jan Hendrik et al. 2009). (Tomayko et al. 2002)

conclude, that during pair programming, the number of defects produced were

very less. (VanDeGrift et al. 2004) analysed that pair programming increases

the programming performance and confidence. In a recent study, (Sultan

Alshehri et al. 2014) use Analytic Hierarchy Process (AHP) to decide the best

pairs in pair programming. From the studies, they found that the expert-expert

is the best pair, other personalities and factors could play significant role that

may need efforts to compromise these factors and add them to the criteria to

be ranked and evaluated.

112

6.3 ASSOCIATION RULE MINING

 Association rule mining is a method for discovering important

relations between variables in large databases. It is widely used in industries

to identify strong rules discovered in the data using different measures of

association. These rules are generated by analyzing data for frequent

conditional patterns to identify the most important relationships within the

data. These rules will help to uncover relationships between seemingly

unrelated data and predicting parametric behavior. These methods are applied

in different industries like retail, banking, and e-commerce specifically

for shopping basket data analysis, product clustering etc.

6.3.1 Association Rule

 The problem of association rule mining is defined as: Let I = {i1,

i2,...,in} be a set of items. Let T = {t1, t2,…, tm} be a set of transactions. A rule

is defined as an implication of the form where, and =

, where antecedent or left-hand-side (LHS) and consequent or right-

hand-side (RHS).

 For example consider the set of transactions shown in Table 6.1.

An association rule {i3} { i2} implies that a customer purchasing an item

i3, will also purchase the item i2.

6.3.2 Quality measures

 The quality measures to measure interestingness of association

rules are support, confidence and lift. The measure support is an important

measure because a rule that has very low support may occur simply by

chance. Support is often used to eliminate uninteresting rules. Support also

has a desirable property that can be exploited for the e cient discovery of

113

association rules. The measure con dence measures the reliability of the

inference made by a rule. For a given rule , the higher the con dence,

the more likely it is for Y to be present in transactions that contain X.

Con dence also provides an estimate of the conditional probability of Y given

X. The measure lift computes the ratio between the rule’s con dence and the

support of the item-set in the rule consequent. Lift is simply the ratio of these

values: target response divided by average response. The measures Support,

Confidence and Lift are defined as below :

6.3.3 Support

 The support value of an item-set X with respect to T, where T is the

set of transactions, is defined as the proportion of transactions in the database

which contains the item-set X and denoted as supp(X).

 For example consider the set of transactions in Table 6.1. The

item-set X = {i2, i3} has a support of 0.5 since it occurs in 2 out of 4

transactions.

6.3.4 Confidence

 The confidence value of a rule, , with respect to the set of

transactions T, is the proportion of the transactions that contains X which also

contains Y. Confidence value of a rule is denoted as

() and defined in the Equation (5.1).

() = ()
)

 (5.1)

 For example, consider the following transaction database

T containing items I={i1, i2, i3, i4, i5} as shown in Table 6.1.

114

Table 6.1 Transaction database

TID Item-sets

T100 i1 i3 i4

T200 i2 i3 i5

T300 i1 i2 i3 i5

T400 i2 i5

 Consider the association rule {i3} {i2}. Confidence for this

association rule is given below.

() =
()

)

 = = 0.67

 In the above example as shown in Table 6.1, item-set i2 and i3

occurs in occurs in two transactions, the value of () is 2. Since

the item-set i3 occurs for transactions T100, T200 and T300 the value of

) is taken as 3.

6.3.5 Lift

 The lift of a rule is defined as the ratio of the observed support to

that expected if X and Y were independent. Lift value of a rule is

denoted as () and defined as in the Equation (5.2).

() = ()
())

 (5.2)

 Consider the example shown in Table 6.1.

115

() =
()

())

=
2

3
= 0.22

 In the above example as shown in Table 6.1, the item-set i3 and i2

occurs in T200 and T300 and hence the value () is taken as 2.

 Since the item-set i3 occurs 3 times, the value of () is taken

as 3 and value of () is also 3 since item-set i2 occurs 3 times shown in

Table 6.1.

6.4 APRIORI ALGORITHM

 One of the most popular algorithms for mining association rules is

Apriori algorithm devised by Agarwal et al. (1993). It is used to extract

frequent item-sets from database and getting the association rule for

discovering the knowledge. A common strategy of association rule generation

is usually to decompose the problem into the following two phases.

 Frequent item-set generation, whose objective is to nd all the

item-sets that satisfy the minimum support threshold. These

item-sets are called frequent item-sets.

 Rule generation, whose objective is to extract all the high

con dence rules from the frequent item-sets found in the

previous step. These rules are strong rules.

 This strategy of association rule generation will help to find

frequent item-sets and to extract all high confidence rules.

116

6.4.1 Frequent item-set Generation

 Consider the set of all items I={a,b,c,d,e} in some data set. A lattice
structure can be used to enumerate the list of all possible item-sets and is
shown in Figure 6.1. The item-set {a,b,c,d,e} is the super set of all other item-
sets. For every subset and its superset a line has been drawn. This resembles a
lattice structure. From Figure 6.1, it is easy to identify all the subsets of a
superset and vice-versa.

 In general, a data set that contains k items can potentially generate
up to 2k 1 frequent item-sets, excluding the null set. A brute-force approach
for finding frequent item-sets is to determine the support count for every
candidate item-set in the lattice structure. To do this we have to compare each
candidate against every other transaction. Such an approach is very
expensive, because it requires O(NMw) comparisons, where N is the number
of transactions, M=2k-1 is the number of candidate item-sets and w is the
maximum transaction width.

Figure 6.1 Item set lattice structure for the set I={a,b,c,d,e}

117

6.4.2 Apriori Principle

 An item-set which has minimum support threshold value is called

frequent item-set else it is called as infrequent item-set. Apriori principle is

stated as “If an item set is frequent then all of its subsets must also be

frequent”. It is used to reduce the number of candidate item-sets explored

during frequent item set generation and this is called pruning.

 To illustrate the idea behind the apriori principle, consider the item-

set lattice shown in Figure 6.2. Suppose {c, d, e} is a frequent item-set.

Clearly, any transaction that contains {c, d, e} must also contain its subsets,

{c, d}, {c, e}, {d, e}, {c}, {d}, and {e}. As a result, if {c, d, e} is frequent,

then all subsets of {c, d, e} must also be frequent. Conversely, if an item-set

such as {a, b} is infrequent, then all of its supersets must be infrequent too.

 The entire sub-graph containing the supersets of {a, b} namely

{a, b, c}, {a, b, d}, {a, b, e}, {a, b, c, d}, {a, b, c, e},{a, b, d, e} and {a, b, c,

d, e} can be pruned immediately once {a, b} is found to be infrequent as

shown in Figure 6.2. This strategy of trimming the exponential search space

based on the support measure is known as support-based pruning. Such a

pruning strategy is made possible by a key property of the support measure,

namely, that the support for an item-set never exceeds the support for its

subsets. This property is also known as the anti-monotone property of the

support measure.

118

Figure 6.2 Apriori principle based pruning

6.4.3 Frequent item-set generation of the Apriori Algorithm

 The pseudocode for the frequent item-set generation part of the

Apriori algorithm is shown in Figure 6.3. Let Ck denote the set of candidate

k-item-sets and Lk denote the set of frequent k-item-sets:

 The algorithm initially makes a single pass over the data set to

determine the support of each item. Upon completion of this

step, the set of all frequent 1-item-set will be known.

 Next, the algorithm will iteratively generate new candidate k-

item-sets using the frequent (k 1) item-sets found in the

previous iteration.

119

 L1= {frequent items};
 for (k= 2; Lk-1 != ; k++) do begin
 Ck= candidates generated from Lk-1

 /* Self join Lk-1 x Lk-1 and eliminating any k-1 size
 item-set that is not frequent */
 for each transaction t in database do
 increment the count of all candidates in
 Ck that are contained in t
 Lk = candidates in Ck with min_sup
return (L1 L2 L3…..Lk);

Figure 6.3 Apriori Algorithm to generate frequent item-set

6.5 PAIR RECOMMENDATION BASED ON ASSOCIATION

RULE MINING

 In this research, we have proposed a new method for pair

recommendation using association rule. The association rule provides two

measures namely confidence which measures the degree of correlation among

pairs and support which measures the significance of the correlation.

Association rules which satisfy minimum support and confidence are called

strong rules. Our objective is to find such strong association rules. The steps

involved in finding strong association rules are as explained in Figure 6.4.

Figure 6.4 Finding of strong Association Rules

Input programmer transaction database

Find k-frequent itemsets with min_sup

Find strong association rules with min_conf

Find association rules

120

 The detailed description of each of the above steps is explained in

the following sub sections.

6.5.1 Programmer Transaction Database

 The programmer transaction database contains list of transactions

where each transaction is a record of programmers satisfying specific feature.

An example transaction database containing list of programmers satisfying set

of features is given in Table 6.2.

 Let T = {A, B, C, D, E, F, G, H} are the programmers and their

corresponding features are shown in Table 6.2

Table 6.2 An example Transaction database

Features List of programmers

Phython A, C, E, H

Java A,B,C,D,E

Web Technology D,E,H

CGPA >= 9 A,E,H

CGPA < 9 B,C,D

Music as hobby B,D,E,H

 For each feature, the list of programmers satisfying the feature is

recorded. The feature Phython is known to programmers A, C, E and H and it

is recorded as first transaction. The feature Java is known to programmers A,

B, C, D and E. The feature Web Technology is known to programmers D, E

and H. Programmers A, E and H has CGPA greater than or equal to 9.

Programmers B, C and D have CGPA less than 9. In the last transaction,

programmers B, D, E and H having music as their hobby is recorded.

121

6.5.2 Finding k-frequent item-set with minimum support

 The frequent item-sets are obtained using Apriori algorithm. The

key idea of the algorithm is to begin by generating frequent item-sets with just

one item (i.e.) frequent 1-item-set and to recursively generate frequent 2-item-

sets, then frequent 3-item-sets until frequent k-item-sets are generated.

Minimum support count is a threshold value given by the user and it is used in

finding the frequent k-item-sets.

6.5.3 Finding association rules

 Association rules are generated after finding all frequent item- sets.

For each frequent item-set L, all non empty subsets S is found and for each S,

rule S L - S is generated. For example if L {A,B,C} is frequent, then its

subsets are S={{A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}}. Then the

association rules are {A} {B,C}, {B} {A,C}, {C {A,B}, {A,B} {C},

{A,C} {B} and {B,C} {A}.

6.5.4 Finding strong association rules

 Association rules satisfying minimum confidence level, which can

be fixed by user, are called strong association rules. For example if minimum

confidence threshold is 80% and the association rule {D} {E.F} satisfies

confidence measure 80%, then it is called strong association rule. This

threshold value 80% is defined by the user depending on the application. This

means that there is strong correlation between D and E, F. From the pair

programming point of view D can be paired with programmer E as well as

with programmer F.

122

6.6 EXAMPLE

 Consider transaction database with 5 programmers P1, P2, P3, P4

and P5 with 9 features F1 to F9 as shown in Table 6.3.

Table 6.3 Programmer Transaction database

TID List of Transactions
F1 P1,P2,P5
F2 P2,P4
F3 P2,P3
F4 P1,P2,P4
F5 P1,P3
F6 P2,P3
F7 P1,P3
F8 P1,P2,P3,P5
F9 P1,P2,P3

 In the Table 6.3, TID refers to the transaction identifications

namely F1, F2, F3, F4, F5, F6, F7, F8 and F9 which are features of

programmers. For each transaction, we have corresponding list of

programmers satisfying the features.

 Let the minimum support be 2, which out of 9 transactions is 22 %

and let minimum confidence required is 70%. First frequent item-set using

Apriori algorithm is found. Then, Association rules will be generated using

minimum support and minimum confidence.

 The set of frequent 1-itemsets, L1, consists of the candidate

1-item-sets satisfying minimum support is shown in Table 6.4. For example,

the item-set P1 occur 6 times in different transaction identifications namely,

F1, F4, F5, F7, F8 and F9 and hence the support count of {P1} is taken as 6.

123

Table 6.4 Frequent 1-item-sets, L1

Item-set Support Count
{P1} 6
{P2} 7
{P3} 6
{P4} 2
{P5} 2

 In the first iteration of the algorithm, each item is a member of the

set of candidate. Next to discover the set of frequent k-item-sets, Lk, the

algorithm uses self join Lk-1 x Lk-1. Initially, the set of frequent 2-item-sets,

L2, is found by self join L1 x L1 to generate a candidate set of 2-itemsets, C2

which is shown in Table 6.5. From C2, the item-sets which satisfies minimum

support count is called L2 and shown in Table 6.6. In Table 6.6, we can see

that the support count value of item-set {P1,P2} is 4. In Table 6.3, the

transactions {P1, P2} occurs 4 times, namely for the transaction

identifications F1, F4, F8 and F9. Similarly the support count values for other

item-sets in Table 6.6 are calculated.

Table 6.5 Candidate 2-item-sets, C2

Item-set
{P1,P2}
{P1,P3}
{P1,P4}
{P1,P5}
{P2,P3}
{P2,P4}
{P2,P5}
{P3,P4}
{P3,P5}
{P4,P5}

124

Table 6.6 Frequent 2-item-sets, L2

Item-set Support Count
{P1,P2} 4
{P1,P3} 4
{P1,P5} 2
{P2,P3} 4
{P2,P4} 2
{P2,P5} 2

 The generation of the set of candidate 3-item-sets, C3, involves use

of the Apriori Property. In order to find C3, compute self join L2 x L2 and is

shown in Table 6.7.

Table 6.7 Candidate 3-item-sets, C3

Item-set
{P1,P2,P3}
{P1,P2,P5}
{P1,P3,P5}
{P2,P3,P4}
{P2,P3,P5}
{P2,P4,P5}

 Now, Join step is complete and Prune step will be used to reduce

the size of C3. Prune step helps to avoid heavy computation due to large Ck.

Based on the Apriori property that all subsets of a frequent item set must also

be frequent, and hence the four latter candidates cannot possibly be frequent.

For example, take {P1, P2, P3}. The 2-item subsets of it are {P1, P2}, {P1,

P3} and {P2, P3}. Since all 2-item subsets of {P1, P2, P3} are members of

L2, {P1, P2, P3} is retained in C3. Consider another example of {P2, P3, P5}

which shows how the pruning is performed. The 2-item subsets are {P2, P3},

{P2, P5} and {P3,P5}. But {P3, P5} is not a member of L2 and hence it is not

125

a frequent item-set. Thus {P2, P3, P5} is removed from C3. Therefore,

C3= {{P1, P2, P3}, {P1, P2, P5}} after checking for all members of result of

join operation for pruning. Now, the transactions in T are scanned in order to

determine L3, consisting of those candidates 3-itemsets in C3 having minimum

support and shown in Table 6.8.

Table 6.8 Frequent 3-item-sets, L3

Item-set Support Count
{P1,P2,P3} 2
{P1,P2,P5} 2

 The algorithm uses self join L3 x L3 to generate a candidate 4-item-

sets, C4 and this is shown in Table 6.9.

Table 6.9 Candidate 4-item-sets, C4

Item-set
{P1,P2,P3,P5}

 C4 contains only one item-set {P1, P2, P3, P5}and this is also

pruned since its subset {P2, P3, P5}is not frequent. Thus, C4= , and

algorithm terminates, having found all of the frequent item-sets. This

completes Apriori Algorithm.

 These frequent item-sets will be used to generate strong association

rules where strong association rules satisfy both minimum support and

minimum confidence. For each frequent item-set “L”, generate all nonempty

subsets of L. For every nonempty subset S of L, output the rule “S L - S”

if supp(L) / supp(S) >= confidence, where confidence is minimum

confidence threshold. The generation of strong association rule is shown in

Figure 6.5.

126

Consider the frequent item set
Lk = {{P1}, {P2}, {P3}, {P4}, {P5}, {P1,P2}, {P1,P3},

{P1,P5}, {P2,P3}, {P2,P4}, {P2,P5}, {P1,P2,P3}, {P1,P2,P5}}.
Consider L = {P1,P2, P5}. All nonempty subsets of L are

{P1,P2}, {P1,P5}, {P2,P5}, {P1}, {P2}, {P5}.
Let minimum confidence threshold is 70%. The resulting association rules are

shown below, each listed with its confidence.
For rule R1: (P1 , P2) P5
support count({P1,P2,P5})

Confidence= =2/4=50%
support count({P1,P2})

Hence R1 is Rejected because it is less than the user defined threshold
value which is 70%.

For rule R2: (P1, P5) P2
support count({P1,P2,P5})

Confidence= =2/2 = 100%
support count({P1,P5})

R2 is Selected, because it is higher the threshold value 70%.
For rule R3: (P2 , P5) P1
support count({P1,P2,P5})

Confidence= = 2/2 =100%
support count (P2, P5)

R3 is Selected since it is higher than the threshold value.

For rule R4: P1 (P2, P5)
support count({P1,P2,P5})

Confidence= =2/6=33%
support count({P1})

R4 is Rejected, since it is less than the threshold value.
For rule R5: P2 (P1, P5)
support count({P1,P2,P5})

Confidence= =2/7=29%
support count({P2})

R5 is Rejected since it is less than the threshold value.
For rule R6: P5 (P1 , P2)
support count({P1,P2,P5})

Confidence= =2/2=100%
support count({P5})

R6 is Selected since it is higher than the threshold value.

Figure 6.5 Generation of Strong Association Rule

Thus three strong association rules are verified.

127

6.7 EXPERIMENTAL RESULTS AND DISCUSSION

 Experiments were conducted by choosing 40 students from fourth

year of Five Year Integrated M.Sc Software Engineering and M.Sc

Theoretical computer science. These students have to submit mini

project/package for their elective courses. The resume of all 40 students were

collected which contains data about their computer language proficiency,

grades obtained, hobbies etc. The correlation among the students is found by

applying Apriori algorithm.

 Based on the correlation results obtained, 15 pairs and 10 solos

were formed. Two packages were given related with the course Semantic

Web. Package-1 was assigned to both pair programmers and solo

programmers. The productivity measures, namely lines of code and time

taken to complete the package-1 for pairs is recorded and shown in Figure 6.6

and 6.7 respectively.

Figure 6.6 Lines of Code Analysis for the pairs

456

765

598

754 789

567
636

590
692 723 689 712

559

690

428

0
100
200
300
400
500
600
700
800
900

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Li
ne

s o
f C

od
e

Pairs

Pairs vs. Lines of Code

128

Figure 6.7 Time Analysis for the pairs

 The pairs in the same group were changed for the package 2 in

Semantic Web course and totally new 15 pairs were formed based on the

recommended association rules. The lines of code and time taken for the new

pairs are shown in Figure 6.8 and 6.9 respectively.

Figure 6.8 Lines of Code Analysis for the new pairs

9
10 10

11
12

10

13

11

13
14

12

14

11

13

9

0

2
4

6
8

10
12

14
16

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Ti
m

e
in

 h
rs

Pairs

Pairs Vs. Time

556
669

552

780 790

560 521 498 524
610

436

560

745

534
646

0
100
200
300
400
500
600
700
800
900

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Li
ne

s o
f C

od
e

Pairs

New Pairs vs. Lines of Code

129

Figure 6.9 Time Analysis for the new Pairs

 The average number lines of code and time taken to complete the

package for the package-1 is 643 LOC and 10.8 hours respectively. After

changing the pairs for the package-2, the average number lines of code and

time taken to complete the package is 598 LOC and 12 hours respectively.

This shows that the performance of students with respect to package-1 and

with that of the package-2 is almost same. The productivity measures like

lines of code and time taken to complete the package for solo programmers

are shown in Figure 6.10 and 6.11 respectively.

Figure 6.10 Lines of Code Analysis for solo programmers

11
13

12

15 15

11 11
10

11
13

9

12
14

11
12

0
2
4
6
8

10
12
14
16

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Ti
m

e
in

 H
rs

Pairs

New Pairs Vs. Time

823 797
935

857

659
790

551

896
765

863

0

200

400

600

800

1000

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Li
ne

s o
f C

od
in

g

Solo

Solo vs. Lines of Code

130

Figure 6.11 Time Analysis for solo programmers

 The performance of pairs and new pairs is compared with solo

programmers in terms of productivity measures time and LOC and the results

are tabulated in Table 6.10 and 6.11 respectively.

Table 6.10 Performance of Solo Programmers Vs Pair

Productivity Measure Pair Solo
Percentage of Increase

(Solo to Pair)

Time(in hrs) 10.8 18.4 70.37

LOC(Lines of code) 643 793 23.32

Table 6.11 Performance of Solo Programmers Vs New Pair

Productivity Measure New Pair Solo
Percentage of Increase

(Solo to Pair)

Time(in hrs) 12 18.4 53.33

LOC(Lines of code) 598 793 32.60

21

18 18
20 19 18

12

20

17

21

0

5

10

15

20

25

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Ti
m

e
in

 h
rs

Solo Programmers

Solo Vs. Time

131

 From Table 6.10 and 6.11 we can observed that there is 23.32%

increase in LOC and 70.37% in time when compared with pair and there is an

increase of 32.60% in LOC and 53.33% in time when compared with new

pairs.

 Performance of students is measured by obtaining ratings from the

faculty by using 10 point grade scale. The grade obtained by pair

programmers for package-1 and package-2 and for solo programmers is

shown in Figure 6.12, 6.13 and 6.14 respectively.

Figure 6.12 Grades obtained by pairs for package-1

9

8 8

7 7

8

7

8 8

7 7 7

8

7

9

0

1

2

3

4

5

6

7

8

9

10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

G
ra

de

Pairs

Pairs Vs. Grade

132

Figure 6.13 Grades obtained by new pairs for package-2

Figure 6.14 Grades obtained by solo programmers

7

6

7

5 5

7

8

9

8

7

9

7

5

7 7

0

1

2

3

4

5

6

7

8

9

10

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

G
ra

de

Pairs

New Pairs Vs. Grade

6

7

5

6

7

6

8

5

6

5

0

1

2

3

4

5

6

7

8

9

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

G
ra

de

Solo

Solo Vs. Grade

133

 From the above graphs it is observed that the average grade

obtained by pairs for package-1, new pairs for package-2 and solo

programmers is 7.6, 6.93 and 6.1 respectively. The grade obtained by solo

programmers is much less than the grades obtained by pairs 1 and 2. This

indicates pair programming improves the grades obtained by the students.

6.8 CONCLUSION

 A new method for recommending pairs based on association rule

mining is proposed. The productivity rate in terms of lines of code and time is

measured for recommended pair 1 and pair 2 is found. The experimental

result shows that there is no significant change in terms of productivity

measure for pair 1 and pair 2. Also there is a small deviation in grades

obtained by pair 1 and pair 2. The productivity rate of solo programmers is

measured and this is less when compared with pair 1 and pair 2. Also the

grades obtained by solo programmers are much less when compared with pair

1 and pair 2. This indicates that pair programming improves the knowledge

and skill level of the students.

134

CHAPTER 7

CONCLUSION

 This thesis analyses the objective and motivation of distributed pair

programming which is one of the practices of Extreme Programming.

7.1 SUMMARY OF THE THESIS

 Experiments have been conducted to evaluate the performance of

students who were engaged in distributed pair programming during laboratory

sessions with those who worked solo during the laboratory sessions. Even

though the laboratory sessions did not add directly to the final grade, the

outcome of being involved in a distributed pair programming experience

appear to have enhanced the quality of self-governing assignment work.

Furthermore, the majority of students enjoyed the practice and would like to

have distributed pair programming used in future courses. The results provide

the support for use distributed pair programming in the software engineering

curriculum.

 Pair programming which is a part of Agile software development

method has been one of the leading research areas. Mostly such research

setups are academic setup where both the programmers are in the pair co-

located. This will not be case when we experiment in real time programmers

in the industry. Hence the need for attempting distributed pair Programming

arises. Our intension is to attack the problem of pair dismissal where either

both or one of the pair trying to omit sharing of knowledge and lead the team

135

as a solo programmer. As a future work, we would provide a tool including

usage of social networking platforms to avoid pair dismissal problem.

 Pair programming is definitely one of the best mutual teaching-

learning methodologies when the pairs are compatible and has the drive to

achieve. The feedback survey conducted during our case study revealed that

pairs of the third experiment were more comfortable and enthusiastic, which

favors the significance of skill level in pairing. It was evident from the third

experiment that the pairs were more compatible and they produced promising

results. Essentially the success of pair programming depends on both the

complexity of programming task and compatibility of the pairs. Only when

the pairs are compatible with each other, the working environment will be

more interesting for the pairs, which will improve their productivity. It will be

a win-win strategy for both the partners where the job is expected to be

completed successfully.

 The study on using the pair programming for the programming

laboratory courses in e-learning teaching-learning process in four laboratory

courses offered at UG and PG level proved to be effective and useful. This

approach has resulted in benefits such as enhancement of problem solving

skills, efficiency, quality, trust, and teamwork skills. We have also observed

that paired laboratory experience is especially advantageous to e-learners. A

hidden advantage that was evident from the learners’ responses was that

learners were motivated to work collaboratively even for other tasks. Firstly,

learners like this approach since they regard it as useful, facilitating the

learning process, enabling to attain the learning goal and good learning

experience.

 Moreover, the results of this study indicate that the use of pair

programming in e-learning has important effects on the learners’ academic

outcomes and also the dropout rate is also reduced. The learners were

136

motivated and involved in laboratory courses that created a confident in them.

The learners obtained better final grades. Therefore, the results hereby

presented suggest that this system can support effective learning strategies for

laboratory courses in e-learning. The research showed several benefits of

using pair programming in laboratory courses in e-learning such as enhanced

learning, greater confidence in work quality, higher problem solving skills,

enhanced interaction skills, and improved team building skills. The result also

shows that e-learners had a good learning experience.

 The majority of students enjoyed the practice and would like to

have distributed pair programming used in future courses. The results provide

the support for use distributed pair programming in the software engineering

curriculum.

 A new method for recommending pairs based on association rule

mining was proposed. The productivity rate in terms of lines of code and time

is measured for recommended pair 1 and pair 2 was found. The experimental

result shows that there is no significant change in terms of productivity

measure for pair 1 and pair 2. Also there is a small deviation in grades

obtained by pair 1 and pair 2. The productivity rate of solo programmers is

measured and this is less when compared with pair 1 and pair 2. Also the

grades obtained by solo programmers are much less when compared with pair

1 and pair 2. This indicates that pair programming improves the knowledge

and skill level of the students.

7.2 FUTURE WORK

 The work carried out on pair programming using graph matching

can be extended to distributed programming environment where the pairs will

be geographically separated and the communication between the pairs can be

through text chatting, voice or video conferencing. Moreover there is scope

137

for enhancing the measure of compatibility by encompassing many other

related factors.

 The study on pair programming approach for e-learning

environment also indicated several areas for future research. Future studies

can examine the effects of pair forming and automatic formation of pairs.

Future studies can examine the use of pair programming in non computer

science curriculum.

 The results of the experiments indicate the following:

 Pair programming in virtual teams is a feasible way of

developing object-oriented software.

 Pair programming in co-located teams is a feasible way of

developing object-oriented software.

 Software development involving, distributed pair

programming seems to be comparable to co-located software

development in terms of the two metrics, namely productivity

(in terms of Lines of Code per hour) and quality (in terms of

the grades obtained).

 Co-located teams did not produce statistically significantly

better results than the distributed teams.

 The feedback given by the students indicates that distributed

pair programming fosters teamwork and communication

within a virtual team.

 The above results indicate that distributed pair programming can be

employed as a very effective method in academic environment which will

improve the productivity and quality of the student community.

138

REFERENCES

1. Abdullah Mohd ZIN, Sufian IDRIS & Nantha Kumar Subramaniam
2006, ‘Improving Learning of Programming through E-Learning by
Using Asychronous Virtual Pair Programming’, Turkish Online
Journal of Distance Education-TOJDE, vol. 7, no. 3, article-13.

2. Alistair Cockburn & Laurie Williams 2001, ‘The Costs and Benefits of
Pair Programming’, Addison-Wesley, Massachusetts.

3. Alistair Cockburn, ‘The Costs and Benefits of Pair Programming’,
Internet source. Beck, K 2000, Extreme Programming Explained:
Embrace Change, Reading, Addison-Wesley, Massachusetts.

4. Bella, E , Fronza, I , Phaphoom, N , Sillitti, A , Succi, G & Vlasenko, J
2013, ‘Pair Programming and Software Defects — A Large, Industrial
Case Study’, IEEE Trans. Software Engineering, pp. 930-953.

5. Bevan, J, Werner, L & McDowell, C 2002, ‘Guidelines for the use of
pair programming in a freshman programming class’, Conference on
Software Engineering Education and Training, IEEE Computer
Society, pp. 100-107.

6. Braught, G, Wahls, T & Eby, L.M. 2011, ‘The case for pair
programming in the computer science classroom’, ACM Transactions
on Computing Education.

7. Bravo, C, Duque, R , Gallardo, J, García, J & García, P 2007, ‘A
Groupware System for Distributed Collaborative Programming:
Usability Issues and Lessons Learned’, International Workshop on
Tools Support and Requirements Management for Globally Distributed
Software Development, Centre for Telematics and Information
Technology, pp. 50–56.

8. Brian Hanks, F 2004, ‘Distributed Pair Programming: An Empirical
Study’, Extreme Programming and Agile Methods - XP/Agile
Universe, Proceedings.

139

9. Canfora, Cimitile, GA & Visaggio, CA 2003, ‘Lessons learned about
distributed Pair programming: what are the knowledge needs to
address?’, Proceedings Twelfth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises,
pp. 314 – 319.

10. Carver, JC, Henderson, L, He, L, Hodges, JE & Reese, DS 2007,
‘Increased retention of early computer science and software
engineering students using pair programming’, Conference on
Software Engineering Education and Training, pp. 115-122.

11. Chaparro, EA, Yuksel, A, Romero, P & Bryant, S 2005, ‘Factors
Affecting the Perceived Effectiveness of Pair Programming in Higher
Education’, 17th Workshop of the Psychology of Programming
Interest Group, Sussex University, pp. 5–18.

12. Cliburn, D.C 2003, ‘Experiences with pair programming at a small
College’, Journal of Computing Sciences in Colleges, USA, vol. 19,
no.1, pp. 20-29.

13. Cockburn, A & Williams, L 2000, ‘The cost and benefits of pair
programming’, eXtreme Programming and Flexible Processes in
Software Engineering (XP2000), pp. 223-247.

14. Concas, G 2007, ‘(Eds.): XP 2007’, LNCS 4536, pp. 70–73.

15. David Stotts, Laurie Williams, Nachiappan Nagappan, Preshant
Baheti, Dennis Jen & Anne Jackson 2003, ‘Virtual teaming:
Experiments and experiences with distributed pair programming’, In
Extreme Programming and Agile Methods – XP/Agile Universe,
Springer, no. 2753, pp. 129-141.

16. DeClue, TH 2003, ‘Pair programming and pair trading: effects on
learning and motivation in a CS2 course’, Journal of Computing
Sciences in Colleges, USA, vol.18, no.5.

17. Denner, J, Werner,L, Campe, S & Ortiz, E 2014, ‘Pair
Programming: Under What Conditions Is It Advantageous for Middle
School Students?’, Journal of Research on Technology in Education,
vol.46, no.3, pp. 277-296.

18. Donohue, T. L & Wong, E. H 1997, ‘Achievement motivation and
college satisfaction in traditional and nontraditional students.
Education’, vol. 118, no.2, pp. 237– 244.

140

19. Dybå, T;Arisholm, E;Sjøberg, D;Hannay, J & Shull, F 2007, ‘Are Two
HeadsBetter Than One? On the Effectiveness of Pair Programming’,
IEEE Software, vol. 24, no. 6, pp. 12-15.

20. Engelbart, DC & English, WK 1968, ‘A Research Center for
Augmenting Human Intellect’, presented at AFIPS Conference
Proceedings of the 1968 Fall Joint Computer Conference, San
Francisco, CA.

21. Erdogmus, H & Williams, L 2003, ‘The Economics of Software
Development by Pair Programmers’, The Engineering Economist,
vol. 48, no. 4, pp. 283-319.

22. Frank Maurer 2002, ‘Supporting distributed extreme programming’, In
Extreme Programming and Agile Methods - XP/Agile Universe 2002,
no. 2418 in LNCS, pp. 13-22.

23. Furberg, A, Kluge, A & Ludvigsen, S 2013, ‘Student sense making
with science diagrams in a computer-based setting’, International
Journal of Computer-Supported Collaborative Learning, vol.8, no.1,
pp. 41-64.

24. Gehringer, EF 2003, ‘A pair-programming experiment in a non-
programming course’, Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications.

25. George, B & Mansour, YM 2002, ‘A Multidisciplinary Virtual Team’,
Accepted at Systemics, Cybernetics and Informatics (SCI).

26. Gerardo Canfora, Aniello Cimitile & Corrado Aaron Visaggio 2003,
‘Lessons learned about distributed pair programming: What are the
knowledge needs to address?’, In Proceedings of the Twelfth IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE03), pp. 314-319.

27. Gittins, R & Hope, S 2001, ‘A study of Human Solutions in eXtreme
Programming’, 13th Workshop of the Psychology of Programming
Interest Group, pp. 41-51.

28. Hahn, Jan Hendrik, Mentz, Elsa Meyar & Lukas 2009, ‘Assessment
Strategies for Pair Programming’, Journal of Information Technology
Education, vol. 8, pp. 273-284.

141

29. Hanks, B 2003,’Empirical Studies of Pair Programming’, Proceedings
of 2nd International Workshop on Empirical Evaluation of Agile
Processes (EEAP '03).

30. Hanks, B, McDowell, C, Draper, D & Krnjajic, M 2004, ‘Program
Quality with pair programming in CS1’, Proceedings of 9th Annual
SIGCSE conference on Innovation and technology in computer science
education (ITiCSE '04), pp.176-180.

31. Hiroshi Natsu 2003, ‘Distributed Pair Programming on the Web’,
Proceedings of the Fourth Mexican International Conference on
Computer Science (ENC’03).

32. Jason, A 2004, ‘Technical and human perspectives on pair
programming’, ACM SIGSOFT Software Engineering Notes, vol. 25,
no.5, pp.1-14.

33. Jim Highsmith 2001, ‘History : The Agile Manifesto’,
www.agilemanifesto.org.

34. Katira, N, Williams, L, Wiebe, E, Miller, C, Balik, S & Gehringer, E
2004, ‘Paired programming/ collaborative learning: On understanding
compatibility of student pair programmers’, Proceedings of the 35th
SIGCSE technical symposium on Computer science education,
pp. 7-11.

35. Layman, L 2006, ‘Changing students perceptions: An analysis of the
supplementary benefits of collaborative software development’,
Proceedings of 19th Conference on Software Engineering Education
and Training, pp. 159-166.

36. Levy, Y 2007, ‘Comparing dropouts and persistence in e-learning
courses’, Computers & Education, vol.48, no.2, pp. 185–204.

37. Maguire, P & Maguire, R 2013, ‘Can Clickers Enhance Team Based
Learning? Findings from a Computer Science Module’, AISHE-J: The
All Ireland Journal of Teaching & Learning in Higher Education,
vol.5. no.3.

38. McDowell, C, Hanks, B, Werner, L 2003, ‘Experimenting with
pair programming in the classroom’, SIGCSE Conference on
Innovation and Technology in Computer Science Education (ITiCSE),
pp.60-64.

142

39. McDowell, L, Werner, H.E, Bullock, J & Fernald, J 2006, ‘Pair
programming improves student retention, confidence and program
quality’, Communications of the ACM, vol.49, no.8, pp.90-95.

40. McDowell, C, Hanks, B & Werner, L 2003, ‘Experimenting with pair
programming in the classroom’, Proceedings of the 8th annual
conference on Innovation and technology in computer science
education, ACM SIGCSE Bulletin, vol.35, no.3.

41. McDowell, C, Werner, L, Bullock, EH & Fernald, J 2003, ‘The impact
of pair-programming on student performance, perception and
persistence’, Proceedings of the 25th International Conference of
Software Engineering, Oregon, pp. 602-607.

42. McDowell, C, Werner, L, Bullock, H & Fernald, J 2002, ‘The effects
of pair-programming on performance in an introductory programming
course’, Proceedings of the 33rd SIGCSE technical symposium on
Computer science education, ACM SIGCSE Bulletin, vol.34, no.1.

43. Nagappan, N, Williams, L, Ferzli, M, Wiebe, E, Yang, K, Miller, C &
Balik, S 2003,’Improving the CS1 experience with pair programming’,
Proceedings of the 34th ACM SIGCSE technical symposium on
Computer science education, ACM SIGCSE Bulletin, vol.35, no.1.

44. Natsu, H, Favela, J, Moran, AL, Decouchant, D & Martinez-Enriquez,
AM 2003, ‘Distributed pair programming on the Web’, Proceedings of
the Fourth Mexican International Conference on Computer Science,
pp. 81–88.

45. Oncu, S & Cakir, H 2011, ‘Research in online learning environments:
priorities and methodologies’, Computers & Education, vol.57, no.1,
pp.1098–1108.

46. Padberg, F & Müller, M 2003, ‘Analyzing the Cost and Benefit of Pair
Programming’, International Software Metrics Symposium (METRICS),
Sydney, Australia, pp. 166 – 177.

47. Prashant Baheti, ‘Exploring Pair Programming in Distributed Object-
Oriented Team Projects’.

48. Prashant Baheti, Edward Gehringer & David Stotts 2002, ‘Exploring
the efficacy of distributed pair programming’, In Extreme
Programming and Agile Methods - XP/Agile Universe 2002, no.2418
in LNCS, pp. 208-220.

143

49. Prashant Baheti, Laurie Williams & Edward Gehringer, ‘Distributed
Pair Programming: Empirical Studies and Supporting Environments’,
Report of Department of Computer Science North Carolina State
University Raleigh, NC 27695.

50. Preston, D 2005, ‘Pair programming as a model of collaborative
learning: A review of the research’, Consortium for Computing
Sciences in Colleges, pp.39-45.

51. Rakesh Agarwal, Tomasz Imielinski & Arun Swami 1993, ‘Mining
Association Rules between Sets of Items in Large Databases’,
Proceedings of the 1993 ACM SIGMOD conference, Washington
D.C.

52. Ron Jeffries, Ann Anderson & Chet Hendrickson 2000, Extreme
Programming Installed, Addison-Wesley.ISBN 0-201-70842-6.

53. Rosenberg, MJ 2001, ‘E-learning: strategies for delivering knowledge
in the digital age’, McGraw Hill, New York,

54. Salleh, N, Mendes, E & Grundy, J 2011, ‘Empirical studies of pair
programming for CS/SE teaching in higher education: A systematic
literature review, IEEE Transactions on Software Engineering, vol.37
no.4, pp. 509-525.

55. Sillitti, A, Succi, G & Vlasenko, J 2012, ‘Understanding the Impact of
Pair Programming on Developers Attention - A Case Study on a Large
Industrial Experimentation’, 34th IEEE International Conference on
Software Engineering (ICSE 2012), pp. 1094-1101.

56. Srikanth, H, Williams, L, Wiebe, E, Miller, C & Balik, S 2004, ‘On
pair rotation in the computer science course’, Proceedings of 17th
Conference on Software Engineering Education and Training,
pp. 144 – 149.

57. Straub, DW 1989, ‘Validating instruments in MIS research’, MIS
Quarterly, vol.13, no.2, pp.147–169.

58. Sultan Alshehri & Luigi Benedicenti, 2014, ‘Ranking and Rules for
selecting two persons in Pair Programming’, Journal of Software,
vol. 9, pp. 2467-2473.

144

59. Tessem, B 2003, ‘Experiences in Learning XP Practices: A Qualitative
Study’, 4th International Conference on Extreme Programming and
Agile Processes in Software Engineering, pp. 131-137.

60. Thomas, L, Ratcliffe, M & Robertson, A 2003, ‘Code warriors and
code-a-phobes: study in attitude and pair programming’, Proceedings
of the 34th SIGCSE technical symposium on Computer science
education, ACM SIGCSE Bulletin, vol.35, no.1.

61. Till Schummer & Jan Schummer 2001, ‘Support for distributed teams
in extreme programming’, Giancarlo Succi and Michele Marchesi,
editors, Extreme Programming Examined, Addison-Wesley,
Massachusetts, pp.355-378.

62. Tomayko, J 2002, ‘A Comparison of pair programming to Inspection
for software Defect Reduction’, Computer Science Education, vol.12,
no.3, pp 213-223.

63. Tristan Richardson, Quentin Stafford-Fraser, Kenneth, R, Wood &
Andy Hopper 1998, ‘Virtual network computing’, IEEE Internet
Computing, vol.2, no.1, pp.33-38.

64. Tsai, WT, Li, W, Elston, J & Chen, Y 2011, ‘Collaborative learning
using wiki web sites for computer science undergraduate education:
A case study’, IEEE Transactions , vol.54, no.1, pp.114-124.

65. Van Der Vyver, G & Lane, M 2003, ‘Using a Team-based Approach in
an IS Course: An Empirical Study’, Journal of Information
Technology Education, pp.393-406.

66. VanDeGrift T 2004, ‘Coupling pair programming and writing:
Learning about students' perceptions and processes’, Proceedings of
the 35th SIGCSE technical symposium on Computer science education,
pp. 2-6.

67. Vanhanen, J & Lassenius, C 2007, ‘Perceived Effects of Pair
Programming in an Industrial Context’, 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications,
Lubeck, pp. 211 – 218.

68. Wells, D & Williams, L 2002, ‘(Eds.): XP/Agile Universe’, LNCS
2418, pp. 13–22.

69. West, DB 2011,’ Introduction to Graph Theory’, Prentice Hall.

145

70. Williams, L & Upchurch, R 2001, ‘In support of student pair
programming’, SIGCSE Conference on Computer Science Education,
pp.327-331.

71. Williams, L & Kessler, R 2002,’Pair Programming Illuminated’,
Addison-Wesley.

72. Williams, L 2001, ‘Integrating pair programming into a software
development process’, Proceedings 14th Conference on software
Engineering Education and Training, pp. 27 – 36.

73. Williams, L, Kessler, R, Cunningham, W & Jeffries, R 2000,
‘Strengthening the Case for Pair-Programming’, IEEE Software,
vol. 17, no. 4, pp. 19-25.

74. Williams, L, Kessler, RR, Cunningham, W & Jeffries, R 2000,
‘Strengthening the case for pair programming’, IEEE Software,
vol. 17, no.4.

75. Williams, L, McDowell, C, Nagappan, N, Fernald, J & Werner, J
2003, ‘Building pair programming knowledge through a family of
experiments’, Proceedings International Symposium Empirical
Software Engineering, pp. 143 – 152.

146

LIST OF PUBLICATIONS

1. Mohanraj, N, Sankar, A 2011, ‘Assessing the effectiveness of
Distributed Pair Programming for an lab assignment in Software
Engineering Curriculum’, International Conference on Mathematical
and Computational Models, Volume : ISBN 978-81-8487-164-7 , pp.
406-414.

2. Mohanraj, N, Sankar, A 2014, ‘Distributed Pair programming : A
Survey’, International Journal of Engineering Research &
Technology, vol. 3 no. 8, e-ISSN: 2278-0181, pp. 1-7.

3. Mohanraj, N, Lekshmi, R, S, Sankar, A, Vidhya, R 2014, ‘Pair
Programming : A Novel weighted Graph Matching Approach for Pair
Compatibility’, Australian Journal of Basic and Applied Sciences, vol.
8, ISSN : 1991-8178, pp. 384-393.

4. Mohanraj, N, Sankar, A, Senthil Kumaran, V 2015, ‘Enhancing
learning experience of e-learners in laboratory courses using pair
programming’, ARPN Journal of Engineering and Applied Sciences,
vol. 10, no.8, ISSN : 1819-6608, pp. 3836- 3843.

