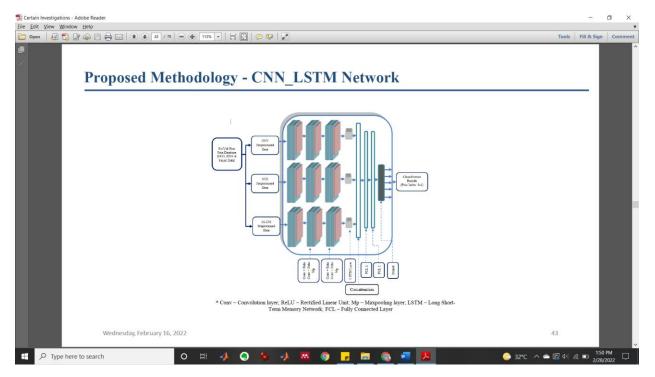
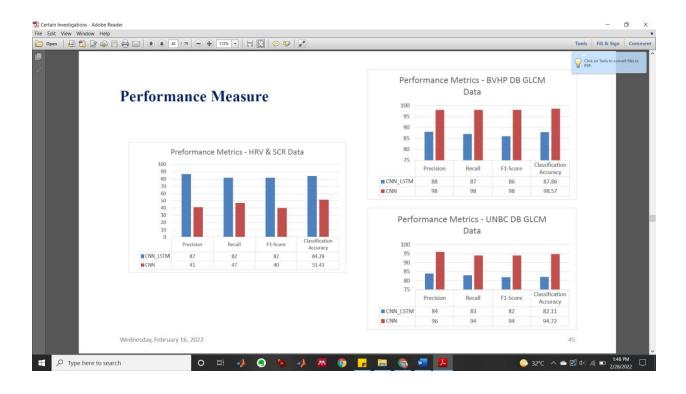
ABSTRACT

Pain is a highly personal and stressful subjective experience linked to damage to the tissue. At present, the management of pain continues to remain ambiguous and disappointing at hospitals. In particular, the management of patients' postoperative pain has become a major medical and nursing challenge. Hospitals have taken initiatives to measure pain using self-report measures such as the Visual Analogue Scale (VAS) and the Numeric Pain Intensity Scale (NPIS). But these methods are inaccurate and subjective as it depends on the patient's input. Therefore, there is a need for an objective, quantitative method to monitor pain continuously. Thus, this work presents the various data-driven approaches to automatically measure and monitor postoperative patient's pain severity levels continuously.

This work utilizes minimal raw data, i.e., two physiological signal data and one behavioral data, to determine pain. Therefore, this research work reduces the constraints imposed by multimodal signal processing and also helps to establish the field of wearable technologies. The physiological signals used for the study are Electrocardiogram (ECG) and Electro-Dermal activity (EDA), and the behavioral data used for the study are the facial expressions of the individuals. Evidence from several cohort studies has shown that physiological signals such as ECG and EDA signals and the facial expression data of individuals are the best sources of the presence of acute pain in adults (especially in postoperative patients).

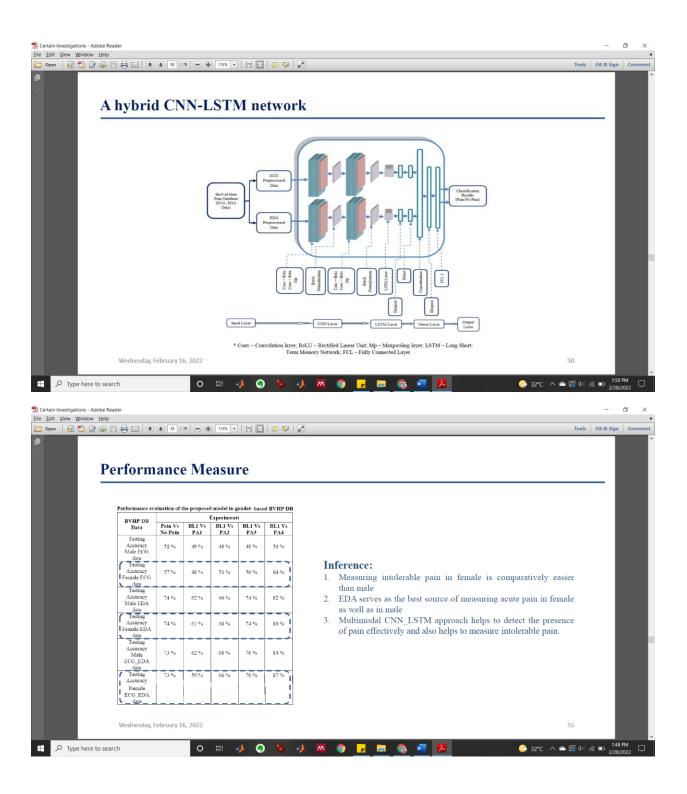

Work 1:


This research work imparts physiological and behavioral data to the different datadriven approaches to evaluate the pain severity levels. The first research work modeled is the supervised ML and DL-based classification models that use the features extracted from the source data such as ECG, EDA, and facial expression data. The notable features used for this study are the use of the Heart Rate Variability (HRV) features of the ECG signal, the phasic component features of the EDA signal, and the Gray Level Co-Occurrence Matrix (GLCM) features of the facial expression data.

A filter-based method, i.e., one-way ANOVA, is applied to the data to select the best pain-associated features. Thus, the features are selected based on statistically significant values (P < 0.05) for the classification. Finally, a classification task implementation helps to classify five different levels of pain (Pain Index: 0-4, namely No pain as BL1, Mild pain as PA1, Moderate pain as PA2, Severe pain as PA3, Intolerable

pain as PA4) using supervised ML algorithms such as Neural Network (NN), Support Vector Machine (SVM), and Random Forest (RF) and DL algorithms like a hybrid Convolutional Neural Network Long Short-Term Memory Network (CNN_LSTM). The algorithm's performance is tested using the following metrics: classification accuracy, recall, precision, f1-score, and confusion matrix. This work utilizes the BioVid Heat Pain database (BVHP DB) and the UNBC-McMaster Shoulder Pain Expression Archive database (UNBC DB).

Although the feature-based supervised ML and DL models achieve high accuracy in classifying various pain levels, the hand-engineered features are its main drawback. In healthcare systems, DL algorithms that do not use predefined features provide several benefits. The ability to extract features without requiring medical professionals to comprehend the health issue fully is their most significant benefit. The present work aims to develop models to achieve good classification results for untrimmed continuous physiological data using a feature learning approach. This approach resolves ML challenges such as feature selection and the instances related to the small datasets. This study had grouped into three modules. The first module is to create a unimodal pain recognition system; then, the next module is to create amultimodal system. The final module is to create a gender-based multimodal system. The proposed three modules are tested on the BVHP physiological Database.

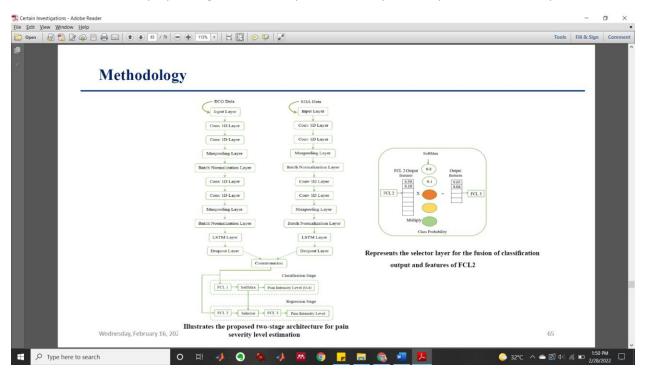

Perform	nance Measure									
	100								- 1	
	90								- 1	
	80 70			_					- 1	
	60								- 1	
	50								- 1	
	40 30									
	20									
	10									
	0	CNN_LSTM	MLP	SVM	RF	CNN				
	Precision	88	81.2	71.9	86.7	56				
	Recall	83	81.47	70.21	86.79	58				
	F1-Score	83	81.26	68.17	86.74	53				
	Classification Accuracy	85	81.47	70.21	86.79	61.43				
	Performance met	nin fan i		tislass al		tion tools				
						tion task				
	using HRV, SC	K, and	GLCM	leatures						
Wednesday, Febru	an 16 2022						16	16		

Performa	nce Meas				
Proposed Algorithms	Data	Performance comparison with baselin Model	classification Task	Accuracy (%)	Inference:
Aigoritimis		CNN LSTM	BL1 Vs. PA1	66	 Proposed Uni-modal CNN LSTM network
		CHITESTIN	BL1 Vs. PA4	88	using EDA data helps to
	ECG	CNN	BL1 Vs. PA1	46.43	measure mild pain
	ECG	MT-NN	BL1 Vs. PA4 BL1 Vs. PA1		effectively.
	5	(D. Lopez-Martinez et al., (2018))	BLI VS. PAI BLI VS. PA4	62.5	2. Proposed Uni-modal CNN LSTM network
		CNN LSTM	BL1 Vs. PA1	67.86	using ECG data helps to
		CNN_LSIM	BL1 Vs. PA4	80.36	measure intolerable
		CNN	BL1 Vs. PA1	62	pain effectively.
	EDA	·'	BL1 Vs. PA4	69.64	3. Proposed Uni-modal
		MT-NN	BL1 Vs. PA1	53	and multimodal
		(D. Lopez-Martinez et al., (2018))	BL1 Vs. PA4	79.98	CNN_LSTM approach
		CON LETA	BL1 Vs. PA1	57.14	works better than other
		CNN LSTM	BL1 Vs. PA4	86.52	proposed algorithms
		CNN !	BL1 Vs. PA1	50	and baseline models.
	ECG & EDA	V======'	BL1 Vs. PA4	46.43	
		MT-NN	BL1 Vs. PA1	54.22	
		(D. Lopez-Martinez et al., (2018))	BL1 Vs. PA4	82.75	
Wednesday, February 16,	2022	1			47

Work 2:

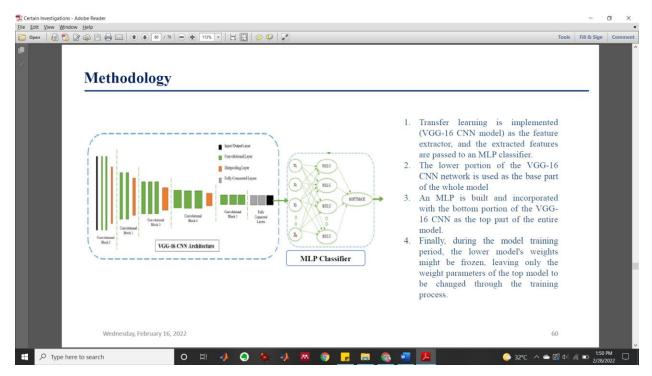
This research work is further extended by developing a pain recognition system using a multimodal approach. Many researchers believe that simply determining the presence of pain is too rough for estimating pain in practice. Therefore, to measure the actual level of pain intensity (Pain Index: 0-4) in each patient, a unimodal and multimodal classification approach is implemented. This work divides into three parts. The first part is establishing a multimodal system using physiological data (i.e., ECG & EDA); the second module is to develop a gender-based multimodal system using physiological data (i.e., ECG & EDA). And the third work is to establish a unimodal system using facial expression data. The performance of all the research work gets tested on the BVHP DB.

All the above proposed models of this study had achieved good classification results as that of the state-of-the-art by producing considerable improvement in the classification accuracy.


part-A BVHP DB DataCarcuracy isolation of the proposed model in entire part-A BVHP DFVHP DBExperimentsBL1 VsBL1 VsBL1 VsBL1 VsDataPain VsBL1 VsBL1 VsBL1 VsAccuracy59%50%48%56%63%ECG data61%69%75%84%Accuracy74%61%69%75%84%Accuracy77%64%68%78%84%Accuracy77%64%68%78%84%Mate522.272.27CG EDA data522.27Co EDA data520.00Mate520.00ECG EDA data520.00Mate520.00ECG EDA data500.00Mate520.00ECG EDA data520.00ECG EDA data520.00Mate520.00ECG EDA data520.00ECG EDA data5	
ECG data 48 2.27 ECG data 48 2.27 ECG data 48 2.27 ECG data 48 2.27 100 <th colspan<="" th=""></th>	
Performance evaluation of the proposed model in entire part-A BVHP DB $\overline{\text{BvHP DB}}$ $\overline{\text{Pain Vs}}$ $\overline{\text{BL1 Vs}}$ $\overline{\text{BL1 Vs}}$ $\overline{\text{BL1 Vs}}$ $\overline{\text{BL1 Vs}}$ $\overline{\text{Pain Vs}}$ $\overline{\text{PA1}}$ $\overline{\text{PA2}}$ $\overline{\text{PA3}}$ $\overline{\text{PA4}}$ $\overline{\text{Accuracy}}$ 59% 50% 48% 56% 63% $\overline{\text{CCG}}$ $\overline{\text{CDA data}}$ 52 2.27 $\overline{\text{CCG}}$ $\overline{\text{CDA data}}$ 53 1.39 $\overline{\text{CCG}}$ $\overline{\text{CDA data}}$ 53 1.39 $\overline{\text{CCG}}$ $\overline{\text{CDA data}}$ 52 2.27 $\overline{\text{CCG}}$ $\overline{\text{CDA data}}$ 53 1.39 $\text{C$	
FCG_EDA data rAs FCG_EDA data rAs $rating$ Accuracy ECG data 59% 50% 48% 56% 63% $rating$ Accuracy ECG data 74% 61% 69% 75% 84% $rating$ Accuracy ECG_EDA data 74% 61% 69% 75% 84% $rating$ Accuracy ECG_EDA data 74% 61% 69% 75% 84% $rating$ Accuracy ECG_EDA data 77% 64% 68% 78% 84% $resting$ Accuracy ECG_EDA data 77% 64% 68% 78% 84% $resting$ Accuracy ECG_EDA data 77% 64% 68% 78% 84% $resting$ Ata 77% 78% 84% 78% 78% $resting$ Ata 77% 64% 68% 78% 84% $resting$ Ata 77% 78% 84% 78% 78% $resting$ Ata 78% 78% 84% 78% 84% $resting$ Ata 78% 84%	
By HP DB DataPain Vs No PainBL1 Vs PA1BL1 Vs PA2BL1 Vs PA3BL1 Vs PA4Testing Accuracy ECG data59%50%48%56%63%Testing Accuracy EDA data74%61%69%75%84%Testing Accuracy ECG_EDA data77%64%68%78%84%Testing Accuracy ECG_EDA data77%64%68%78%84%Testing Accuracy ECG_EDA data77%64%68%78%84%	
DataNo PainPA1PA2PA3PA4Testing Accuracy59%50%48%56%63%Testing Accuracy74%61%69%75%84%Testing Accuracy77%64%68%78%84%Testing Accuracy77%64%68%78%84%Testing Accuracy77%64%68%78%84%Testing Accuracy77%64%68%78%84%Testing Accuracy77%64%68%78%84%Testing Accuracy77%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%64%Testing Accuracy71%64%68%78%64% </th	
Testing Accuracy59%50%48%56%63%Testing Accuracy74%61%69%75%84%Testing Accuracy77%64%68%78%84%Testing Accuracy77%64%68%78%84%Testing Accuracy77%64%68%78%84%Testing Accuracy77%64%68%78%84%Testing Accuracy77%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Accuracy71%64%68%78%84%Testing Boold71%64%68%78%84%Testing Boold71%71%71%90%90%Testing Boold71%71%90%90%90%Testing Boold71%71%90%90%90%Testing Boold71%71%90%90%90%Testing Boold71%90%90%90%90%Testing Boold71%90%90%90%90%Testing Boold80%70%90%90%90%Testing Boold70%90%90%90%Testing 	
ECG dataTesting Accuracy EDA dataTesting Accuracy 	
Accuracy EDA data Testing Accuracy ECG_EDA data Testing Accuracy Try 6 64% 66% 77% 64% 66% 78% 84% 84% 84% 10 10 10 10 10 10 10 10 10 10	
EDA data Testing Accuracy ECG_EDA data d	
Accuracy ECG_EDA data 77% 64% 68% 78% 84%	
ECG_EDA data 7790 0490 7590 7590 6490 data 20 10 <	
data 0	
Precision 29 7 0 15 0 Recall 96 10 40 0 #13-acore 87 87 0 22 0	
#f1-score 67 6 0 22 0 Performance comparison for the multiclass classification task using entire part-A BVIIP DB	
Performance Measure	
Performance comparison of the proposed model with existing methods for the classification task (BL1 Vs. PA4) ECG EDA	
existing methods for the classification task (BL1 Vs. PA4) Method ECG Accuracy (%) EDA Accuracy (%) Inference:	
existing methods for the classification task (BL1 Vs. PA4) Method ECG EDA Accuracy (%) Accuracy (%) Inference: (Werner et al. 2015) Entire DB- 62.00 Entire DB- 73.80 2 Multimodel CNNL I STM	
existing methods for the classification task (BL1 Vs. PA4) Method ECG Accuracy (%) EDA Accuracy (%) (Werner et al. 2015) Entire DB- 62.00 Entire DB- 73.80 (Kächele et al. 2016) Entire DB- 53.90 Entire DB- 81.10 (Kächele et al. 2017) Entire DB- 53.90 Entire DB- 81.10	
existing methods for the classification task (BL1 Vs. PA4) Method ECG EDA Accuracy (%) Accuracy (%) Inference: (Werner et al. 2015) Entire DB- 62.00 Entire DB- 73.80 (Kächele et al. 2016) Entire DB- 53.90 Entire DB- 81.10	

The next novel research contribution is developing the two-stage approach to estimate pain level using physiological signals (i.e., ECG & EDA) and the class separation method. An algorithm's capability to identify pain from indeterminate length streaming sequences is expected to be a complex problem. This task gets achieved by using a DL-based joint classification and regression framework. This method is the improvised

model of the previous work, which had accomplished in two stages. The first stage is to classify the given pre-processed physiological signals into five different pain levels. Then, the second stage is to establish a regression model based on the training samples from each class of the first stage.


This system outperforms the state-of-the-art and the previously proposed methods by producing a substantial drop in the MAE, RMSE values. Besides, the proposed system is independent of the subject characteristics; the forecast for new data gives reduced error irrespective of the trained data. The use of patient features such as gender characteristics and physiological data improves the system's predictive ability.

	9 🕘 🕀 113%	- 🗄 🔛 🤅	€ 🖓 🖗		Tools Fi
				90 84 84 84 84 84 84 84 84 84 84 77 74 74 74 74 74 74 74 74 74 74 74 74	
Performa	nce Me	asure		60 69 72 67 67 68 74 70 61 58 56 60 60	
Performance	valuation of clas	sification stage	in BVHP	30	
Data	Classificatio		MSE	0 Precision Recall fi-score Accuracy	
	Stage BL1 Vs. PA		0.4587	BLLVS PA1 61 58 56 60 BLLVS PA2 69 67 67 68	
ECG	BL1 Vs. PA	2 53%	0.4741	BL1 Vs PA3 72 84 77 74 BL1 Vs PA4 84 84 84 84	
Uni-mod			0.4243	Performance comparison of binary classification task using	
	BL1 Vs. PA BL1 Vs. PA		0.3888 0.3859	both ECG & EDA data	
EDA	BL1 Vs PA		0.3133		
Uni-mod	BLI VS. PA		0.2560	Confusion Matrix for Test Dataset Confusion Matrix for Test Dataset	_
	BL1 Vs. PA BL1 Vs. PA		0.1463 0.4038	- 200	- 350
ECG_ED			0.3210	ELL- 201.0 134.0 - 240 SLL- 397.0 SL.0	- 300
Multi-mo	lal BL1 Vs. PA	3 74%	0.2598	- 220 B	- 200
	BL1 Vs. PA	4 84%	0.1577	5 − 200 Å − 200 Å	- 150
ECG Uni-mod	Multiclass	53%	0.3656	PA4 . 372 # 200.0 = 280 PA4 . 54.0 344.0 - 280	- 100
EDA	, Multiclass	63%	0.3049	- 140	
Uni-mod	11	0376	0.3049	و ² رو ⁴ و ² Predicted label Predicted label Predicted label	
ECG_ED Multi-mo		60%	0.4130	(a) (b) (a) Confusion Matrix for the classification tas	
		1		(a) Confusion Matrix for the classification (as (BL1 Vs. PA4) using ECG data, (b) Confusion Matrix for th	
earch Reader Ip	0 H		* 4 9 9 2	🐱 🌀 🗗 📾 🚳 🌌 🔼 🕒 👄 32°C	
Reader Ip	9 🗨 🗭 113%			🐱 🎯 🔽 📷 🚳 📲 🗾 🕒 👄 32°C *	^
Reader 10 10 10 10 10 10 10 10 10 10	⁹ ● ● 1135	asure	2 9		^
Reader 10 10 10 10 10 10 10 10 10 10	■ • • • • • • • • • • • • • • • • • • •	• E C (sion stage	BVHP DB	へ 👄 💽 如) 偏
Reader 10 10 10 10 10 10 10 10 10 10	⁹ ● ● 1135	• B D (asure classification	🗩 🖗 🖬	BVHP DB IAE Performance Metrics	^ ← [] (1)) (fi;
Reader 10 10 10 10 10 10 10 10 10 10	nce Me mance evaluat	Classification BL1 Vs. I	sion stage	BVHP DB TAE Performance Metrics $MAE = Mean(Z_{act} - Z_{est})$	^ ← [] (1)) (fi;
Reader 10 10 10 10 10 10 10 10 10 10	nce Me mance evaluat Data ECG	Classification BL1 Vs. F BL1 Vs. F	sion stage n Stage PA1 PA2	BVHP DB IAE Performance Metrics $\frac{138}{35}$ $MAE = Mean(Z_{act} - Z_{est})$	^ ← [] (1)) (fi;
Reader 10 10 10 10 10 10 10 10 10 10	nce Me mance evaluat	Classification BL1 Vs. I	sion stage n Stage PA1 PA2 PA3	BVHP DB TAE Performance Metrics $MAE = Mean(Z_{act} - Z_{est})$	へ 👄 💽 如) 偏
Reader 10 10 10 10 10 10 10 10 10 10	nce Me mance evaluat Data ECG Uni-modal	Classification BL1 Vs. I BL1 Vs. I BL1 Vs. I	sion stage n Stage PA1 PA2 PA3 PA4	BVHP DB IAE Performance Metrics MAE = Mean($ Z_{act} - Z_{est} $) MAE = $\sqrt{Mean((Z_{act} - Z_{est}))^2}$	へ 👄 💽 如) 偏
Reader 10 10 10 10 10 10 10 10 10 10	s • • 1105 nce Me mance evaluat Data ECG Uni-modal EDA	Classification BL1 Vs. I	sion stage n Stage PA1 PA2 PA3 PA4 PA1 PA2	BVHP DB TAE TAE TAE TAE TAE TAE TAE TAE	^
Reader 10 10 10 10 10 10 10 10 10 10	nce Me mance evaluat Data ECG Uni-modal	Classification BL1 Vs. I BL1 Vs. I	sion stage n Stage PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA1 PA2 PA3	BVHP DB IAE Performance Metrics MAE = Mean($ Z_{act} - Z_{est} $) MAE = $\sqrt{Mean}((Z_{act} - Z_{est}))^2$ MAE = $\sqrt{Mean}((Z_{act} - Z_{est}))^2$ Regression results comparison with EDA signal for the obviolence of (PL V). PAD	^
Reader 10 10 10 10 10 10 10 10 10 10	s • • 1105 nce Me mance evaluat Data ECG Uni-modal EDA	Classification BL1 Vs. I BL1 Vs. I	sion stage n Stage PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4	BVHP DB IAE Performance Metrics 138 $MAE = Mean(Z_{act} - Z_{est})$ 135 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 141 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 157 139 135 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) 191 Aberithm	^
Reader 10 10 10 10 10 10 10 10 10 10	nce Me mance evaluat Data ECG Uni-modal EDA Uni-modal	Classification BL1 Vs. I BL1 Vs. I	sion stage n Stage PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA1	BVHP DB The Performance Metrics 138 $MAE = Mean(Z_{act} - Z_{est})$ 135 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 141 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 135 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 135 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) MAE 191 MAE	^
Reader 10 10 10 10 10 10 10 10 10 10	nce Me mance evaluat Data ECG Uni-modal ECG_EDA	Classification BL1 VS. I	sion stage n Stage PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA3 PA4 PA3 PA4 PA1 PA2	BVHP DB The performance Metrics IAE Performance Metrics 338 $MAE = Mean(Z_{act} - Z_{est})$ 335 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 341 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 35 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) 36 Algorithm MAE RMSE 37 Pixed 2018) 1.07 ± 0.15 1.29 ± 0.17	へ 👄 💽 如) 偏
Reader 10 10 10 10 10 10 10 10 10 10	nce Me mance evaluat Data ECG Uni-modal EDA Uni-modal	Classification BL1 V5.1	sion stage n Stage PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA1 PA2 PA3	BVHP DB The performance Metrics 138 MAE = Mean($ Z_{act} - Z_{est} $) 135 MAE = $\sqrt{Mean((Z_{act} - Z_{est}))^2}$ 136 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) 137 MAE = Mean($(Z_{act} - Z_{est}))^2$ 137 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) 140 MAE = Mean($(Z_{act} - Z_{est}))^2$ 157 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) 166 MAE = Nose 17 No 18 No	へ 👄 💽 如) 偏
Reader 10 10 10 10 10 10 10 10 10 10		Classification BL1 Vs. I BL1 Vs	sion stage n Stage PA1 PA2 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4	BVHP DB IAE Performance Metrics 138 $MAE = Mean(Z_{act} - Z_{est})$ 135 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 141 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 135 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) 136 Image: Additional cols and the classification task (BL1 Vs. PA4) 149 NAE 137 Image: Additional cols and the classification task (BL1 Vs. PA4) 136 Image: Additional cols and the classification task (BL1 Vs. PA4) 149 NAE 137 Image: Additional cols and the classification task (BL1 Vs. PA4)	^
Reader 10 10 10 10 10 10 10 10 10 10	Trance Me Trance evaluat Data ECG Uni-modal ECG_EDA Multi-modal ECG Uni-modal	Classification BL1 V5.1	sion stage n Stage PA1 PA2 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4	BVHP DB IAE Performance Metrics 138 $MAE = Mean(Z_{act} - Z_{est})$ 135 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 141 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 135 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) 136 Image: Additional cols and the classification task (BL1 Vs. PA4) 149 NAE 137 Image: Additional cols and the classification task (BL1 Vs. PA4) 136 Image: Additional cols and the classification task (BL1 Vs. PA4) 149 NAE 137 Image: Additional cols and the classification task (BL1 Vs. PA4)	^
Reader 10 10 10 10 10 10 10 10 10 10	nce Mee mance evaluat Data ECG Uni-modal ECG_EDA Multi-modal ECG_Uni-modal ECG_Uni-modal	Classification BL1 Vs. I BL1 Vs	sion stage n Stage PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA1 PA2 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3	BVHP DB Performance Metrics 38 MAE = Mean($ Z_{act} - Z_{est} $) 35 MAE = $Mean((Z_{act} - Z_{est}))^2$ 36 RMSE = $\sqrt{Mean((Z_{act} - Z_{est}))^2}$ 37 RMSE = $\sqrt{Mean((Z_{act} - Z_{est}))^2}$ 39 Sequences 39 Regression results comparison with EDA signal for the classification task (BL1 Vx. PA4) MAE = Mean((Z_{act} - Z_{est}))^2 39 Sequences 39 Regression results comparison with EDA signal for the classification task (BL1 Vx. PA4) 106 NAE 419 1.07 ± 0.15 37 R-NN 108 1.05 ± 0.15 206 Model II	Tools Fi
Reader 10 10 10 10 10 10 10 10 10 10		Classification BL1 Vs. I Multicla Multicla	sion stage n Stage PA1 PA2 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA3 PA4	BVHP DB IAE Performance Metrics 138 $MAE = Mean(Z_{act} - Z_{est})$ 135 $MAE = Mean(Z_{act} - Z_{est})$ 141 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 135 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 135 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) 136 Nagorithm 149 NAE 137 1.07 ± 0.15 138 1.07 ± 0.15 139 1.05 ± 0.15 139 1.05 ± 0.15 149 NeNN 108 1.05 ± 0.15 206 Model II	^ 🛆 💽 ሳ፡፡) 🦟 ነ
Reader 10 10 10 10 10 10 10 10 10 10	nce Mee mance evaluat Data ECG Uni-modal ECG_EDA Multi-modal ECG_Uni-modal ECG_Uni-modal	Classification BL1 Vs. I BL1 Vs. I Multicla	sion stage n Stage PA1 PA2 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA3 PA4	BVHP DB Performance Metrics 38 MAE = Mean($ Z_{act} - Z_{est} $) 35 MAE = $Mean((Z_{act} - Z_{est}))^2$ 36 RMSE = $\sqrt{Mean((Z_{act} - Z_{est}))^2}$ 37 RMSE = $\sqrt{Mean((Z_{act} - Z_{est}))^2}$ 39 Sequences 39 Regression results comparison with EDA signal for the classification task (BL1 Vx. PA4) MAE = Mean((Z_{act} - Z_{est}))^2 39 Sequences 39 Regression results comparison with EDA signal for the classification task (BL1 Vx. PA4) 106 NAE 419 1.07 ± 0.15 37 R-NN 108 1.05 ± 0.15 206 Model II	^ 🛆 💽 ሳ፡፡) 🦟 ነ
Reader 10 10 10 10 10 10 10 10 10 10	P P	Classification BL1 Vs. I Multicla Multicla	sion stage n Stage PA1 PA2 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA4 PA3 PA3 PA4	BVHP DB IAE Performance Metrics 138 $MAE = Mean(Z_{act} - Z_{est})$ 135 $MAE = Mean(Z_{act} - Z_{est})$ 141 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 135 $RMSE = \sqrt{Mean((Z_{act} - Z_{est}))^2}$ 135 Regression results comparison with EDA signal for the classification task (BL1 Vs. PA4) 136 Nagorithm 149 NAE 137 1.07 ± 0.15 138 1.07 ± 0.15 139 1.05 ± 0.15 139 1.05 ± 0.15 149 NeNN 108 1.05 ± 0.15 206 Model II	^ 🛆 💽 ሳ፡፡) 🦟 ነ

Work 4:

Several studies have shown that pain treatment is primarily dependent on gender. Therefore, gender-based models have been developed for all the proposed research works. Emotional experience plays an important role when measuring pain. This relationship could reinforce or prevent the correct measurement of the severity of pain. Therefore, to effectively treat acute/chronic pain, subjects' emotional states should be simultaneously measured. In this study, emotions are measured using the same networks which have been proposed to determine pain using facial expression data. This algorithm is tested with the facial expression data of the CK+ dataset to determine various emotions (Emotions: Neutral, Sadness, Surprise, Happiness, Fear, Anger, Contempt, and Disgust).

<section-header><section-header><section-header><section-header><section-header><section-header><image/></section-header></section-header></section-header></section-header></section-header></section-header>	Performance Meas			120
rch OH O O O O O O O O O O O O O O O O O O	70 -	70 95 45 74 89 43 ticlass classification task to 100	84 87	
Wednesday, February 16, 2022				Performance metrics of multiclass classification task using
der erformance Measure	/ednesday, February 16, 2022			face mage data of D vill DD
der	0 #		m o	🔽 🛅 🚳 🐖 🌉 📀 32°C ^ 🛥 🖲
Database Authors Model Accuracy	formance Measur	* e with the existing m	nethods Accuracy	
(%) Inference:				Inference: 1. Highly expressed emotions such as Anger, Disgust
LINEC (Semuel and Line Control of the second surprise has been classified effectively			<u> </u>	Happy and surprise has been classified effectively
DB Londhe 2018) CNN 95.34 compared to other emotions 2. UNBC DB – Strong pain is classified effectively		CNN		compared to other emotions 2. UNBC DB – Strong pain is classified effectively
Proposed Model MLP 94 compared to other pain levels		VGG16 CNN ±		
BVHP VGG16 CNN + Effectively than other pain levels	Proposed Model			
DB Proposed Model MLP 61 4. Proposed model performance is as that of exit	Proposed Model BVHP (Yang et al. 2016)	MLP LBP+BSIF	60.23	3. BVHP DB – Severe and Intolerable pain is classified
(Zhao <i>et al.</i> 2016) Deep 97.3 implemented for better performance.	Proposed Model BVHP (Yang et al. 2016) DB Proposed Model	MLP LBP+BSIF VGG16 CNN + MLP Peak piloted Deep	60.23 61	 BVHP DB – Severe and Intolerable pain is classified Effectively than other pain levels Proposed model performance is as that of existing methods – optimization of the algorithm need to be
	Proposed Model BVHP (Yang et al. 2016) DB Proposed Model (Zhao et al. 2016) (CK+ DB	MLP LBP+BSIF VGG16 CNN + MLP Peak piloted Deep Network VGG_faces +	60.23 61 97.3	 BVHP DB – Severe and Intolerable pain is classified Effectively than other pain levels Proposed model performance is as that of existing methods – optimization of the algorithm need to be

Work 5:

The real-time data gathered from the PSGIMSR, Coimbatore, is tested with all the proposed research works. The real-time data acquired for the study are annotated with VAS measure to evaluate the pain severity levels.

Porform	nance M	agenra			
	Tance IVI	casure			
Performance	results of the two data (postoper	-stage method o ative patients)	n the real-tin		
Metho		Classification Error	Test Samples		
Unimod		0.33	10		
Unimod EDA		0.66	10	Inference:	
Multimoo ECG & E		0.36	10	1. MAE and RMSE values are comparatively low when compared to the baseline	
			n the real-tin	algorithms	
Performance	results of the two			2. For real-time data, the proposed algorithm	
	data (only no	rmal subjects)		performance is better for ECG data	
Performance	data (only no	rmal subjects)	Test Samples	F	
	data (only no d Accuracy (%) al - 50	rmal subjects) Classification			
Metho	data (only no d Accuracy (%) al - 50 al - 70	rmal subjects) Classification Error	Samples		
Metho Unimod ECG Unimod	data (only no d Accuracy (%) al - 50 al - 70 ial - 70	rmal subjects) Classification Error 0.5	Samples 10		
Metho Unimod ECG Unimod EDA Multimoo	data (only no d Accuracy (%) al - 50 al - 70 ial - 70	rmal subjects) Classification Error 0.5 0.3	Samples 10 10		