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ABSTRACT

Parkinson’s disease (PD) is a chronic neurodegenerative brain dis-

order, which affects the ability of the person to perform the regular activities.

While diagnosing PD, neurologists often use several clinical manifestations

like motor and non-motor symptoms and rate the severity based on the Unified

Parkinson Disease Rating Scale (UPDRS). This kind of rating largely depends

on the expertise and experience of the clinicians. and it is not only subjective

but also inefficient. Gait pattern, which plays a vital role in assessing the human

mobility, is a significant biomarker to classify whether the subject is healthy or

affected with PD. Hence, in this work, we aim to investigate the gait pattern of

healthy and PD subjects using machine learning (ML) and deep learning (DL)

algorithms to design an automatic and non-invasive PD diagnosis and severity

rating system that can assist the neurologists in their daily PD diagnosis. In

this regard, the vertical ground reaction force (VGRF) gait dataset is utilized

and the following three ML and DL classification algorithms are explored: 1.

Supervised machine learning based classifier 2. Convolutional neural network

(CNN) classifier and 3. Long-short term memory(LSTM) network classifier.

Firstly, To obtain the optimal feature set for the classification model, a corre-

lation based feature selection technique is employed. Secondly, the statistical

analysis of the VGRF sensor data is performed to differentiate between healthy

control and PD patients. Four supervised machine learning algorithms namely

decision tree(DT), support vector machine (SVM), ensemble classifier(EC) and

Bayes classifier(BC) are used to classify the stages of PD based on Hoehn and

Yahr (H&Y) scale. Moreover, to avoid data overfitting problem and enhance the

classification accuracy, the 10 fold cross validation technique is utilized. Even

though the supervised machine learning classifiers yield high accuracy in detect-

ing the PD, one of the major limitations is the need for hand-crafted features.
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Hence, to overcome the hand-crafted feature approach, secondly, we explore the

CNN classifier for multi-class classification for various frame sizes. To avoid

the data over-fitting, L2 regularization technique, which penalizes the weight

parameters of the nodes, is used in combination with the dropout layer. For

optimizing the loss function, a stochastic gradient descent (SGD) algorithm is

employed because it reduces the computational burden for large dataset. Ex-

perimental results substantiate that the proposed DCNN architecture outper-

forms state-of-the-art artificial neural network (ANN) classifiers and achieves

the highest classification accuracy of 98.45%. Thirdly, to evaluate the potential

of LSTM classifier, which is highly suitable for learning the long-term temporal

dependencies in the gait cycle, we study the PD rating based on modified H&Y

scale and UPDRS scale for three different walking scenarios. For solving the

cost function, Adam, a stochastic gradient-based optimizer, is employed and the

severity of PD is categorized based on UPDRS and H&Y scale. The experi-

mental results reveal that Adam optimized LSTM network can effectively learn

the gait kinematic features and offer an average accuracy of 98.6% for binary

classification and 96.6% for multi-class classification
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CHAPTER 1

INTRODUCTION TO PARKINSON’S DISEASE

PD is a movement disorder which manifests a multitude of motor

and non-motor symptoms and consequently impacts the quality of life. Even

though PD is still incurable, early prognosis of this disease can help to plan

for appropriate medication/surgery so that the progression of the disease can be

minimized. Some of the most common non-motor symptoms are cognitive im-

pairment, sleep disorders and depression. The motor symptoms of PD include

tremor, rigidity, slow movement, also called bradykinesia, and postural insta-

bility (Tropea & Chen-Plotkin 2018; Mirelman et al. 2019). The average age of

onset for PD is about 60 years. According to the Parkinson’s foundation(PF),

USA, it is estimated that about 8-10 million people worldwide are affected by

the PD. Arvid Carlsson, a Swedish neuropharmacologist who was awarded the

Nobel prize in Physiology in 2000, found the major reason for PD being the lack

of a neurotransmitter in the brain called "dopamine". The dopamine deficiency

can lead to several mental and neurological issues, including executive dysfunc-

tion and dementia. Figure 1.1 illustrates the manifestations of both motor and

non-motor symptoms of PD. Even though PD is a kind of extrapyramidal disor-

der without any apparent etiology, the recent investigations reveal that the major

causes for the PD could be attributed to gene mutation, excessive exposure to

toxins and aging. Numerous non-motor symptoms of PD start ahead of the mo-

tor symptoms (Alam et al. 2017; Joshi et al. 2017). Three of the most common

motor symptoms of PD are: tremor, limb rigidity, and slowness of movement

(bradykinesia). Similarly, the common non-motor symptoms of PD are sleep

disorder, depression and fatigue. Person affected with PD may also have prob-

lem with balance, posture and coordination. Even though the symptoms of PD
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are common, progression of PD may vary largely from person to person and

change over time (Zeng & Wang 2015; Das 2010).

Figure 1.1: Causes for PD and its symptoms

1.1 PD-rating scales

The two commonly used clinical rating scales to monitor PD pro-

gression are UPDRS and H&Y scale (Goetz et al. 2004). While the former is

largely a comprehensive tool to assess the non-motor symptoms including men-

tal behaviour, mood and social interaction, the latter is entirely based on the

mobility, which takes only the motor symptoms into consideration to classify

the stages of PD (Joshi et al. 2017).

1.1.1 UPDRS

MDS-UPDRS is a conventional rating scale to assess the stages of

PD based on the response to the questionnaire and score prepared by clinicians.
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UPDRS, which typically contains 42 items, are categorized into four parts: Part

I-non-motor activity of daily living, Part II-motor activity of daily living, Part

III-motor examination and Part IV -motor complications. According to UPDRS,

the symptoms of PD are rated on a 5 point scale, ranging from 0 to 4. The higher

the score, the more the severity of the PD. The highest UPDRS score is 199,

representing the worst possible stage of PD.

1.1.2 H&Y scale

H&Y scale, proposed by Melvin D. Yahr and Margaret M. Hoehn in

1967, contains five stages, as illustrated in Table 1.1, and it is still considered to

be a universally accepted rating scale for its effectiveness to provide an overall

validation of severity according to functional disability. Moreover, H & Y scale

is easy to apply and quick to finish the rating.

Table 1.1: PD severity rating based on H & Y scale

Scale Functionality Stage
1 Unilateral-Minimal No functional disability

2 Bilateral-Midline Without Impairment of Balance

3 Bilateral-Moderate With Impaired Postural Reflexes

4 Need assistance to stand Severely Disabled

5 Confined to bed or wheelchair
bound

Completely Disabled

1.2 Existing methods for PD diagnosis

Some of the physiological signals used for PD diagnosis are speech,

handwriting, tremor and gait.
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1. Speech based methods

Speech signals manifest the non-motor symptoms of PD. Particularly, the

phonotation of sustained vowels, words can help to discriminate between

healthy and PD patients. In this direction, for predictive telediagnosis of Parkin-

sonism, University of Oxford collaborated with the National Centre for Voice,

Denver to collect a variety of voice samples from people afflicted with PD

and made the dataset publicly available in UCI repository. Several researchers

have used the UCI speech signals and investigated the performance of ML

algorithms to classify the stages of PD based on UPDRS (Sakar et al. 2013).

For optimal feature selection, the time-frequency based features such as jitter,

shimmer etc from voice samples have been utilized.

2. Handwriting based methods

The handwriting, which entails cognitive, perceptual-motor and

kinesthetic components, can act as a potential biomarker when there is any

significant change in it. As it is a non-invasive method, researchers have in-

vestigated PD prognosis using handwriting dynamics. Commonly, using the

graphics tablet and LCD monitor, the handwriting database is acquired for three

different tests namely 1. Static Spiral Test, 2. Dynamic Spiral Test and 3. Sta-

bility Test. In this direction, some of the notable results using ML are reported

in (Pereira et al. 2018; Gupta et al. 2020).

3. MRI based methods

In another direction, the advent of brain imaging modalities pro-

vides great impetus to the computer based PD diagnosis. Particularly, the

structural magnetic resonance imaging has been widely used for its ability to

render high-resolution structure of the brain tissues and non-invasiveness char-
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acteristics. Similarly, an another tool called DatScan, a type of single-photon

emission computed tomography (SPECT) scanning technique, is also used for

diagnosis of PD. Recently, ML algorithms are used to detect the presence of

dopamine in the substantia nigra using the MRI images (Amoroso et al. 2018;

Battineni et al. 2019). However, the cost associated with the MRI based PD

diagnosis is considerably high and as an alternative approach, gait based PD

analysis has been largely used.

4. Gait based methods

Gait based classification which can be used for diagnosing motor

control deficits is not only cost effective but also easy to acquire the gait pattern

(Shrivastava et al. 2017). Interestingly, gait cycle has some prominent charac-

teristics like periodicity, deterministic behavior and spatio-temporal features.

Moreover, unlike speech and handwriting based methods that give only the non-

motor symptoms, the gait analysis renders clinicians to assess motor symptoms

and visualize how severely the subjects are affected (Turner & Hayes 2019).

Hence, based on the assessment, the clinicians can suggest the therapeutic treat-

ment to delay the progression of the disease.

1.3 Motivation

Currently, in the clinical setting, the diagnosis and severity rating

of PD is based on the visual observation and UPDRS score prepared by the

clinicians. Since the visual observation is subjective, it may result in biased

assessment. Hence, recently, there has been a paradigm shift towards utilizing

machine learning (ML) algorithms to uncover the hidden patterns in the phys-

iological signals, which can help the clinicians in their daily diagnosis of PD.

One of the significant reasons for using ML algorithms in bioinformatics is their

ability to handle large volume of data and discover biomarkers, resulting in not
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only accurate prediction but also reduced time for diagnosis.

1.4 Objectives

1. To explore the statistical features of gait pattern through VGRF sen-

sor data and identify the significant biomarkers to differentiate be-

tween healthy and PD patients.

2. To investigate the kinematic features of gait pattern and extract the

primary kinematic parameters using correlation based feature selec-

tion approach so as to address the limitation of statistical analysis,

which is influenced by the weight factor of the subject under study.

3. To implement the supervised machine learning based classifiers, in-

cluding SVM, DT, EC, and BC, to diagnose the stages of PD based

on UPDRS and H & Y scale.

4. To overcome the hand-crafted feature requirement of machine learn-

ing classifiers using deep learning approach and evaluate the perfor-

mance of CNN models to quantify the stages of PD.

5. To exploit the long-term temporal dependencies in the gait cycle

through LSTM classifier and implement both binary class and multi-

class classifications.

1.5 Contributions

The major contributions of this thesis are as follows.

• An automatic and non-invasive gait classification framework us-

ing supervised machine learning algorithms is presented to assist
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the clinicians to diagnose the severity of PD. Utilizing the vertical

ground reaction force (VGRF) dataset from the publicly available

Physionet database, we have performed the statistical and kinematic

analyses of gait pattern and extracted the salient biomarkers from the

gait cycle using the Pearson’s rank correlation test to reduce the re-

dundant/insignificant features.

• Four supervised machine learning algorithms namely decision tree

(DT), support vector machine (SVM), ensemble classifier (EC) and

Bayes classifier (BC) are utilized to classify the stages of PD based

on the optimal feature vector obtained from the statistical and kine-

matic analyses of gait pattern. Moreover, to avoid data overfitting

issue and enhance the classification accuracy, the 10 fold cross vali-

dation technique is utilized.

• To minimize the dispersion in gait samples and decorrelate them

from physical parameters like height and weight, a multiple regres-

sion normalization approach is used. Experimental validation sub-

stantiates that compared to several state-of-the-art methods, the pro-

posed approach, which uses optimal spatiotemporal features, can of-

fer better prediction of PD severity rating based on the H&Y scale.

• In the second approach, we present a DCNN based PD classification

method mainly to avoid the need for hand-crafted features in the ma-

chine learning algorithms. We have analyzed the 1D and 2D DCNN

architectures for different frame sizes to assess the performance of

one dimensional input signal method and two dimensional image in-

put method in CNN framework. Then, the performance of the pro-

posed DCNN architecture to classify the severity of PD is assessed

based on modified H & Y scale using gait pattern obtained for three

different walking scenarios such as 1. walking on a level ground 2.

walking on a treadmill and 3. walking with rhythmic auditory stim-
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ulation (RAS).

• Dividing the pre-processed input pattern into frames, we test the per-

formance of the classifier using the confusion matrix. Utilizing the

stochastic gradient descent algorithm for CNN loss function opti-

mization and L2 regularization technique to avoid data overfitting,

we achieve an average stage classification accuracy of 98.45 % for

PD stage prediction.

• In the third approach, a PD severity rating technique using an Adam

optimized LSTM classifier is put forward. Firstly, the binary classi-

fication of PD is addressed by exploiting the long-term temporal gait

sequence. Subsequently, the severity rating of PD is identified based

on UPDRS and H&Y scale.

• The performance of LSTM classifier is tested on the VGRF gait

dataset, which includes three different walking scenarios. Moreover,

to avoid data overfitting, the proposed approach utilizes dropout and

L2 regularization techniques.

• Adam optimizer, which has less memory requirement and few hyper

parameters tuning, is employed to solve the cost function. The LSTM

classifier has achieved an average accuracy of 96.6% for multi-class

classification and provides 3.9% improvement in overall accuracy

compared to the existing techniques

1.6 Organization of the thesis

Chapter 1 presents the PD overview, causes and the methods avail-

able for diagnosis. The clinically accepted PD rating scales such as UPDRS

and H&Y scales are briefed along with the motivation and contributions of this

thesis.
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Chapter 2 briefs the statistical analysis of gait pattern and explains

the dataset considered for the study. The supervised machine learning algo-

rithms and the performance metrics considered to assess the classifiers are also

presented. Then, the performance of classifiers evaluated using the confusion

matrix and the region of curve (ROC) is discussed.

Chapter 3 provides a brief introduction to the spatial and temporal

features of gait and presents the proposed kinematic analysis of gait pattern for

severity rating of PD. Subsequently, the performance of the ML classifiers are

assessed using the six key performance metrics and the comparative study of the

proposed approach with the other related approaches are presented.

Chapter 4 describes the deep learning based PD severity rating ap-

proach using gait cycle analysis. The architecture and different layers of DCNN

are introduced. Then, the performance of 1D and 2D DCNN for binary class

and multi-class classification problems are discussed. The experimental results

obtained using the Keras and Tensorflow platform are presented.

Chapter 5 explains the LSTM network classifier for binary and multi-

class classification of PD using the gait analysis. It also presents the Adam

optimizer for solving the objective function and the L2 and dropout layer to

avoid the data overfitting issue. Finally, the performance of the LSTM classifier

compared with those of the related approach is presented for validation.

Chapter 6 gives the concluding remarks of the thesis along with some

of the open challenges, which require further investigation.
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CHAPTER 2

STATISTICAL ANALYSIS OF GAIT FOR PD

SEVERITY RATING

The tremor and gait abnormality are the initial manifestations of PD.

Gait pattern, which involves the sequence of periodic and rhythmical pattern

of foot movements, has some interesting and distinct properties like periodic-

ity, irregular cycle and deterministic behavior (Chen et al. 2013). Particularly,

the kinematic features of gait pattern have significant biomarkers which can be

critical for not only identifying the presence of PD but also quantifying the pro-

gression of the disease (Creaby & Cole 2018). Moreover, the spatiotemporal

variables are less prone to physiological parameter like age, height and weight;

hence, they can serve as the basis to extract the significant features for PD prog-

nosis (Zhang & Ma 2019). Even though the PD diagnosis has been studied ex-

tensively based on gait cycle analysis, the kinematic features of gait abnormality

for prognosis of PD have not been investigated to its full potential. Hence, the

major objective of this paper is to explore the significant spatiotemporal fea-

tures of the gait pattern so that the stages of PD, which need finer investigation

of walking pattern, can be precisely identified.

In this study, an automatic and non-invasive gait classification sys-

tem for PD diagnosis and severity rating is presented. From the gait pattern ac-

quired using 16 foot worn sensors, the prominent temporal and spatial features

are extracted. To obtain the optimal feature set for the classification model, a

correlation based feature selection technique is employed. Firstly, the statis-

tical analysis of the VGRF sensor data is performed to differentiate between

healthy control and PD patients. In statistical analysis, the weight of the sub-
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ject influences the foot plantar pressure and classifier output. Hence, we also

perform kinematic analysis to avoid biased classification. Unlike several other

ML based approaches which perform the binary classification, in this work, we

aim to solve the multi-class classification problem of PD using discriminative

feature set obtained from the spatiotemporal features. Four supervised machine

learning algorithms namely decision tree(DT), support vector machine (SVM),

ensemble classifier(EC) and Bayes classifier are used to classify the stages of

PD based on H & Y scale. Moreover, to avoid data overfitting problem and

enhance the classification accuracy, the 10 fold cross validation technique is

utilized. The efficacy of the classifier model is validated using the region of

convergence (ROC) curve and confusion matrix.

2.1 Related Work

Several previous studies have assessed the gait features of subjects

affected with Parkinsonism. For instance, based on gait and tremor features

extracted using statistical analysis, Perumal & Sankar 2016a presented a linear

discriminant analysis (LDA) based pattern classification algorithm for early de-

tection and monitoring of PD. Utilizing the kinetic features to identify a PD

tremor due to Parkinsonism, they analysed the frequency domain characteristics

of tremor and obtained an average accuracy of 86.9%. However, their approach

is reduced to a binary classification problem in which only the presence of PD

is detected and stages of PD have not been identified.

Aşuroğlu et al. 2018 proposed a locally weighted random forest re-

gression model to eliminate the effects of interpatient variability in gait features

and utilized the ground reaction force sensor data to model the relationship be-

tween gait patterns and PD symptoms. Based on the 16 time-domain and 7

frequency-domain features, they provided a quantitative assessment of PD mo-

tor symptoms. Nevertheless, only the statistical analysis of GRF, which is influ-
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enced by the weight of the subject, is used for identifying the PD symptoms and

the kinematic analysis and the severity level of PD have not been reported.

Using wavelet based feature extraction technique for gait character-

istics and extracting 40 features based on statistical analysis and frequency dis-

tributions, Lee & Lim 2012 proposed a PD classification approach which made

use of neural network with weighted fuzzy membership functions and obtained

the maximum classification accuracy of 81.63%. To differentiate between idio-

pathic PD patients and healthy subjects, they used the bounded sum of weighted

fuzzy membership functions for selecting minimum features based on a non-

overlapping area distribution method. Nonetheless, the large number of gait

features obtained from the wavelet approximation and detailed coefficients will

significantly increase the computational complexity.

For computer assisted PD severity detection, Zhao et al. 2018b put

forward a two channel model, which fuses long short-term memory and con-

volutional neural network to learn the spatiotemporal gait pattern from VGRF

data. Even though significant improvement in the classifier accuracy is achieved

using the deep learning architecture, it has been reported that higher predic-

tion accuracy can be achieved by fusing the multiple data sources like MRI

image and biochemical data. To understand the periodicity and randomness in

gait signals, Prabhu et al. 2018 performed the recurrence quantification analysis

(RQA) along with statistical analysis and reported that RQA works well even for

short length gait time series data. Moreover, for optimal selection of feature vec-

tors, they used Hill-climbing feature selection method and compared the clas-

sification performance of probabilistic neural network with that of the SVM.

Figueiredo et al. 2018 showed that using kernel principal component analysis

and genetic algorithm, which have the capability to process the nonlinear data

and converge to global optimum, could significantly reduce the dimensionality

features of gait parameters for efficient classification. They presented a com-
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parative analysis of machine learning approaches for gait pattern recognition,

and used a cross validation method to assess the performance of classification

algorithms for human walking recognition in clinical applications.

Oung et al. 2018 proposed a multi-class PD classification approach

with the combination of speech signals and gait pattern, which are analysed

based on empirical wavelet transform (EWT) and empirical wavelet packet trans-

form (EMPT), respectively. Applying the Hilbert transform to extract the wavelet

energy and entrophy based features, they achieved a classification accuracy of

95% using the extreme learning machine classifier. However, the feature dimen-

sionality selection/reduction to obtain the optimal feature set, which can reduce

the computational burden, has not been implemented. To obtain the significant

differences in the spatial-temporal features between PD patients and healthy

controls, Wahid et al. 2015 used a multiple regression (MR) normalization ap-

proach and evaluated the efficacy of machine learning algorithms in classifying

PD gait after normalization. Notwithstanding, the MR model was developed

and tested for a relatively small dataset with body mass index of majority of the

subjects being greater than 25 that may produce increased dispersion of data.

Several of the aforementioned studies have used time-domain and

frequency-domain features to differentiate the healthy control and PD subjects.

Nevertheless, the major limitation is that such features can not be directly re-

lated to clinical indicators which could assist the neurologists to rate the severity

level (Khoury et al. 2019a; Ricciardi et al. 2019). Therefore, the prime focus of

this paper is to develop a functional tool for diagnosing and severity rating of

PD based on the VGRF data and seek to identify the discriminative kinematic

features which can be linked to the clinical indicators. Furthermore, using the

correlation based optimal feature set extracted from spatiotemporal domain, the

proposed PD diagnosis approach aims to improve the classifier accuracy.
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2.2 Dataset Description

We used the publicly available gait dataset in Physionet for the pro-

posed study (web 2019). The gait dataset, which was collected at the Labo-

ratory for Gait & Neurodynamics, Movement disorders Unit of the Tel-Aviv

Sourasaky Medical centre, Israel, was contributed by three group of researchers

namely Yogev et al. 2005, Hausdorff et al. 2007, and Toledo et al. 2005b. The

gait dataset contains three gait pattern acquired through 1. walking on a level

ground 2. walking with rhythmic auditory simulation (RAS) and 3. walking on a

treadmill, is utilized. The prime novelty of this work lies in using the correlation

based spatiotemporal features from gait data to enhance the early diagnosis of

PD.The dataset contains the gait pattern from 93 patients affected with PD and

73 healthy subjects. To study the stride-to-stride dynamics of the PD patients,

the walking pattern was obtained for three different conditions. The dataset col-

lected by (Yogev et al. 2005) consists of gait pattern for normal walking on a

level ground, and the dataset contributed by Hausdorff et al. 2007 contains the

gait cycle for walking at a comfortable pace with RAS, and the contribution from

Toledo et al. 2005b comprises a gait time series data for walking on a treadmill.

Since the gait stability is impaired in PD subjects, investigating the

gait dynamics through the force sensor data can reveal the aspect of locomotor

dyscontrol and assist to quantify the stride-to-stride variability. Hence, in this

work, for quantifying the gait disorder of the subjects with and without the ex-

ternal rhythms, the three datasets are collectively considered for identifying the

severity of PD (Toledo et al. 2005a). Henceforth, for easy representation, the

three datasets are referred to as Ga (Yogev et al. 2005), Ju (Hausdorff et al. 2007),

and Si (Toledo et al. 2005b) . Table 2.1 gives the demographics of the subjects

who volunteered to take part in the experimentation for the collection of gait

dataset. Table 2.2 presents the total number of healthy and PD subjects with

their level of severity in each dataset determined according to H& Y scale.
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Table 2.1: Demographics of healthy subjects and PD patients in three datasets

Dataset Group Subjects Male Female
Age (Yrs) Height Weight

Mean±SD Range (metre) (Kg)

Ga (Yogev et al. 2005)
Healthy 18 10 8 57.9±6.7 37-70 1.68±.08 74.2±12.7

PD Patient 29 20 9 61.6±8.8 36-77 1.67±.07 73.1±11.2

Ju (Hausdorff et al. 2007)
Healthy 26 12 14 39.31±18.51 20-74 1.83±.08 66.8±11.07

PD Patient 29 16 13 66.80±10.85 44-80 1.87±.15 75.1±16.89

Si (Toledo et al. 2005b)
Healthy 29 18 11 64.5±6.8 53-77 1.69±.08 71.5±11.0

PD Patient 35 22 13 67.2±9.1 61-84 1.66±.07 70.3±8.4

Table 2.2: Number of subjects in the three dataset based on severity rating

Dataset Healthy Severity 2 Severity 2.5 Severity 3
Ga (Yogev et al. 2005) 18 15 8 6

Ju (Hausdorff et al. 2007) 26 12 13 4

Si (Toledo et al. 2005b) 29 29 6 0

For measuring the forces underneath a foot as a function of time, the

gait capturing system contained a pair of shoes and a recording unit attached

to the waist of the subjects. Each shoe had eight VGRF sensors, as illustrated

in Figure 2.1. Table 2.3 gives the relative positioning of the sensors in x− y

coordinate system. The gait data was collected at a sampling rate of 100 Hz

from 16 VGRF sensors (8 per foot) for 2 mins. To neglect the startup effects,

the first 20s data from each of the subject’s time series data was removed.
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Figure 2.1: VGRF sensor positioning underneath each feet

Table 2.3: VGRF sensor relative positioning in the left and right feet (SL-sensor left, SR-
sensor right)

Sensor X axis (mm) Y axis (mm)

SL1 -500 -800

SL2 -700 -400

SL3 -300 -400

SL4 -700 0

SL5 -300 0

SL6 -700 400

SL7 -300 400

SL8 -500 800

SR1 500 -800

SR2 700 -400

SR3 300 -400

SR4 700 0

SR5 300 0

SR6 700 400

SR7 300 400

SR8 500 800
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Figure 2.2: VGRF signals of (a) HOA (b) PPD

Figure 2.2 , which shows the exemplar walking pattern for both healthy

older adult (HOA) and person with Parkinson’s disease (PPD) from three datasets,

highlights that the plantar pressure exerted by the PD patient while walking is
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almost half of the pressure exerted by the healthy controls. Moreover, Figure

2.2 b highlights that in the dataset provided by Si (Toledo et al. 2005b) when

the PPD walked with external cueing through RAS the mobility increased with

substantial increase in the walking speed of the subjects. Specifically, we can

notice the improvement in swing and stride time variabilities in the PPD com-

pared to HOA. It is important to note that as gait pattern is subjective to the

weight and height of the patients, the classification based on the statistical pa-

rameters is largely biased and may result in poor stage classification. Hence, we

aim to extract the significant spatiotemporal biomarkers from gait pattern for

efficient stage classification.

2.3 Methodology

Figure 2.3 shows the proposed gait classification framework for sever-

ity prediction of PD. In data analysis, to reduce the start-up and end-up effects of

gait, first and last two gait cycles of each trial were discarded. The statistical and

kinematic analyses of the gait pattern are individually performed to extract the

prominent biomarkers. Subsequently, the optimal feature set obtained using the

rank correlation method is given to the classifier model to predict the stages of

PD (Mu et al. 2018). To assess the performance of the classifier model 6 perfor-

mance metrics are reported. In the following section, we present the statistical

and kinematic feature extraction techniques and discuss the ML algorithms used

in the classifier model.
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Stages of Subjects
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16x166 matrix Temporal and spatial features

Figure 2.3: Proposed gait classification framework for stage classification
of PD

2.3.1 Feature Extraction using statistical analysis

We compute the fluctuation magnitudes of 16 sensors to statistically

analyse the gait pattern of both healthy subjects and PD patients. Table 2.4,

which gives the mean, median and standard deviation of both the subjects, re-

veals that the fluctuation of the mean value of the respective sensors in 2 feet

of the PD patient is relatively higher than that of the healthy subjects, particu-

larly in SL1, SL4, SL5 and SL6 for left feet sensors and SR1, and SR7 for right

feet sensors. Due to higher fluctuations of mean value, we utilize the mean of

the VGRF sensor data as a significant biomarker for PD classification. More-
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over, for assessing the efficacy of the classifiers, we use 10 fold cross validation

approach, which divides the dataset into 10 subsets.

Table 2.4: Statistical parameters of VGRF signals from 16 sensors

Sensors
Healthy subjects PD patients

Mean Median SD Mean Median SD

SL1 77.71 85.80 29.98 56.54 50.29 32.45

SL2 63.66 63.35 20.43 55.15 51.56 20.42

SL3 51.52 48.43 20.47 51.17 48.97 21.17

SL4 57.56 51.94 23.42 66.28 63.34 25.89

SL5 25.54 18.29 21.08 38.89 33.76 26.67

SL6 66.61 64.60 20.72 67.34 67.42 21.29

SL7 71.71 68.58 20.16 78.89 78.73 22.50

SL8 36.67 32.35 19.91 38.99 33.98 21.35

SR1 75.48 79.62 28.22 55.50 56.73 30.91

SR2 62.74 59.37 19.69 55.45 53.02 19.26

SR3 54.14 52.65 23.02 52.95 49.79 22.94

SR4 61.93 59.98 22.12 67.77 67.87 21.88

SR5 30.40 23.12 23.76 36.62 31.02 23.15

SR6 65.31 64.35 22.08 65.66 66.16 19.01

SR7 71.39 66.94 22.12 80.66 78.41 22.24

SR8 39.29 34.94 17.44 39.09 37.31 14.24

Each subset is cross-validated with other subsets such that 90% of

data is used for training and 10% of data is utilized for testing. As a result, it

avoids data overfitting and guarantees that the already trained and tested data

will not be included for the next subset. Furthermore, by applying the Shapiro-

Wilk test with the significance level of 5%, the normal distribution of the gait

attributes is assessed. Figure 2.4 illustrates the foot pressure output of VGRF

sensor for both healthy and PD subjects, and Figure 2.5 shows the input matrix

obtained from 16 sensors for the 166 subjects based on the H & Y scale for
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the four stages of PD. Since the no of samples in the early stages of PD is

significantly high, it can assist to reasonably capture the relationship between

the input and output feature sets.

Figure 2.4: Mean plantar force of 16 sensors

Figure 2.5: Classifier input pattern (16x166 matrix) with stages

2.4 Classification algorithms

2.4.1 Decision tree

Decision tree (DT) classifier, which is a supervised machine learning

algorithm, is an effective and simple technique that formulates the classification

model in the form of a tree structure. Dividing the dataset into smaller subsets
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in the form of nodes and branches, DT iteratively determines the nonlinear rela-

tionship between the input and output of the system. In this study, DT classifies

the 4 event responses namely healthy, mild, medium and high based on the H &

Y scale. Figure 2.6 shows the tree structure of the DT used for PD classification.

HEALTHY

MILD

HIGH

MEDIUM MILD

PREDICTION<1   

PREDICTION<2.25   

PREDICTION<2.75   

SENSOR1<122.418   

   PREDICTION>=1

   PREDICTION>=2.25

   PREDICTION>=2.75

   SENSOR1>=122.418

Figure 2.6: Tree structure of PD classification using DT algorithm

2.4.2 SVM Classifier

SVM uses a hyperplane to determine the decision boundaries which

separate between data points of different classes. Aiming at formulating a hy-

perplane with the maximal distance between two classes, SVM works based

on the maximum margin principle. The key advantage of SVM is that it can

handle both linear and nonlinear classification problems (Luts et al. 2010). The

fundamental idea behind SVM is to find a mapping between the original data
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points from the input space to a higher dimensional feature space using the suit-

able kernel function. For a training data set {xi,yi}n
i=1 with the input vectors

being xi ∈Rd and the class labels being yi, SVM attempts to map d-dimensional

input vector x to the dh dimensional feature space using the kernel function

ϕ(.) :Rd→Rdh . The hyperplane which separates the classes in the feature space

can be defined as wT ϕ(x)+ b = 0, with b ∈ R and w being an unknown vector

which has the same dimension of ϕ(x) (Ghaddar & Naoum-Sawaya 2018).

Figure 2.7 illustrates the SVM classifier for a binary classification

problem. A data point in input vector x is allotted to the first class if f (x) results

in +1 otherwise to the second class if f (x) yields -1. Particularly, when the

separation surface is nonlinear, SVM uses the kernel functions to map the input

vectors to a high dimensional feature space (Korkmaz et al. 2014). Oftentimes,

as the perfect separation between two classes is not feasible, to account for the

errors in the classification of data points the slack variables are utilized. Hence,

the standard SVM problem can be defined as the following quadratic convex

problem.

min
w,b

1
2

wT w+C
N

∑
i=1

ξi, (2.1)

such that

yi(wT
ϕ(xi)+b)≥ 1−ξi, i = 1,2, . . . ,N (2.2)

ξi ≥ 0 i = 1,2, . . . ,N (2.3)

where C indicates the positive regularization constant, which defines the balance

between maximizing the separation margin and minimizing the classification

error.
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Figure 2.7: SVM classifier

2.4.3 Ensemble Classifier

Ensemble classifier is a learning model in which multiple classifiers

are integrated to enhance the generalization capability of a single classifier. The

idea of combining multiple classifiers was put forward by Huang & Suen 1993,

and later in 1998, it was extended by Kittler 1998, who assessed the perfor-

mance of multiple classifiers and presented an integrated theoretical framework.

Normally, two major tasks are involved in creating a framework for successful

ensemble classifier: 1. formulating a suitable set of classifiers and 2. identifying

a combination technique, which aggregates different classifier outputs to find a

suitable class. In this work, bootstrap aggregating (Bagging), which is a parallel

learning technique, is used. Firstly, for a data set, which consists of n samples,

m random samples are extracted and used for training the base classifiers. Then

using a majority voting the results of base classifiers are combined to improve

the accuracy of the classification framework.
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2.4.4 Naive Bayes Classifier

Naive Bayes (NB) classifier is a probabilistic classifier which relies

on two fundamental assumptions: 1. the attributes (features) are independent

of each other and 2. each attribute has the same importance. The advan-

tage of NB classifier is that it works well in multiclass prediction and requires

less training data compared to other similar models such as logistic regression

(Mughal & Kim 2018). Hence, it is one of the widely preferred classifier al-

gorithms in medical expert systems for different clinical applications. For the

given input dataset X = [x1,x2, ...xn] with n features, NB classifier determines

the class Ck based on the Bayes theorem as follows.

p(Ck|X) =
p(X |Ck)p(Ck)

p(X)
(2.4)

where p(Ck|X) is the posterior probability, p(Ck) is the marginal probability and

p(X |Ck) is the conditional probability. The data point with the highest condi-

tional probability p(Ck|X) is assigned to the class Ck as follows.

Ĉ = argmax p(Ck)
n

∏
i=1

p(Xi|Ck) (2.5)

where Ĉ represents the predicted class for X with the given features x1,x2, ...,xn.

2.5 Classifier performance metrics

The performance metrics used for assessing the classifier efficacy are

accuracy, sensitivity, specificity, positive predictive value (PPV) (or) precision,

negative predictive value (NPV) and F-score. Accuracy, which is the simplest

and common measure to assess the classifier, is defined as the degree of correct

predictions of the model based on true positive (TP), true negative (TN), false

positive (FP) and false negative (FN) values.
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Accuracy(%) =
T N +T P

T N +T P+FN +FP
∗100% (2.6)

Sensitivity measures the proportion of true positives to the total number of ac-

tual positives. It indicates how good the diagnostic test can identify the normal

(negative) condition.

Sensitivity(%) =
T P

T P+FN
∗100% (2.7)

Specificity characterizes the maximum negative likelihood ratio (NLR) of true

negative prediction to actual negatives (Abdulhay et al. 2018).

Specificity(%) =
T N

T N +FP
∗100% (2.8)

PPV, which is also referred to as precision, represents the proportion of positive

predictions to all actual positives. As it conveys how many of diagnostic test

positives are true positives, the higher the PPV, the better the results.

PPV(%) =
T P

T P+FP
∗100% (2.9)

NPV indicates the proportion of negative predictions to all actual negatives. It

describes how many of test negatives are true negatives.

NPV(%) =
T N

T N +FN
∗100% (2.10)

F-score, which conveys the accuracy of the model, is the weighted harmonic

mean of precision and sensitivity.

F-score(%) = 2∗ Precision*Sensitivity
Precision+Sensitivity

∗100% (2.11)
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2.6 Results and Discussion

The proposed PD stage classification approach is implemented in

MATLAB 2018 with the following parameter settings for the classifiers. In DT

classifier, Gini’s diversity index is chosen as a split criterion with the maximum

number of splits being 100 and the surrogate decision splits per node being 10.

For SVM, the linear kernel function with box constraint level of 3 and a kernel

scale of 4 is configured. In the case of EC, the number of learners is assigned as

30, and the maximum number of splits is set to 165 with the learning rate of 0.1.

Moreover, the bagged tree ensemble method is chosen for multi-class predic-

tion. In Bayes classifier, the Gaussian kernel function with unbounded support

vector is configured, and the multivariate multinomial predictor is set for cat-

egorical predictions. The classifier algorithms are run 10 times independently

to get an average performance estimate.The training time of the four classifiers

namely DT, SVM, EC and BC are 8.06s, 10.04s, 13.09s and 3.19s, respectively.

2.6.1 Performance assessment for statistical features

Figure 2.8 shows the scatter plot of each classifier with its respective

stage classification based on the SL6 and SL7 sensor data, which have signifi-

cant fluctuations for all stages of PD. The four stages of dataset include healthy-

73, high-10, medium-28 and mild-55. The DT classifier excluding one medium

class event, predicts all other events correctly, whereas in SVM, even though

all the high events are properly classified, the prediction rate is relatively less in

the case of medium and mild events. For instance, 3 medium and 2 mild data

variables are unpredicted in the case of SVM. The EC out of the 73 healthy

subjects, correctly identifies 72 as healthy subjects and gives one incorrect re-

sponse. Similarly, in the high, medium and mild events, unpredicted values are

2, 3 and 2, respectively. Among all four classifiers, the BC provides the least

prediction results with the incorrect classification in the case of healthy being 4
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and medium being 25.
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Figure 2.8: Scatter plot of (a) DT (b) SVM (c) EC (d) BC

Table 2.5 presents the classification accuracy along with the sensitiv-

ity and specificity for each stage of the subject for four classifiers. The three key

performance metrics for each classifier is illustrated in Figure 2.9. Moreover, to

visualize the cumulative performance of the classifiers for each stage of the sub-

ject, the confusion matrix, which is a table layout that gives the summary of the

predicted results and the actual results, is shown in Figure 2.10. From the cu-

mulative performance metrics for each classifier computed from the confusion

matrix and presented in Table 2.6, we can read that in the case of DT, except
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the medium event, all other events are effectively classified. Even though the

misclassification rate in the case of medium event is 4 %, DT classifier offers

an overall accuracy of 99.4 %. Moreover, with the least NPV of all classifiers,

DT guarantees the lowest misclassification rate for all the four stages considered

for classification. SVM which is the second best classifier gives the accuracy of

97.6%, followed by EC and BC with the accuracy of 95.1% and 69.7% respec-

tively.

Table 2.5: Classifier performance metrics for four stages based on statisti-
cal features

Classifier Stage TN TP FN FP Accuracy Sensitivity Specificity

DT

Healthy 73 93 0 0 100 100 100

High 10 156 0 0 100 100 100

Medium 27 138 1 0 99.4 100 99.3

Mild 55 110 0 1 99.4 98.2 100

SVM

Healthy 73 93 0 0 100 100 100

High 9 156 0 1 99.4 90.0 100

Medium 25 137 2 2 97.6 92.6 98.6

Mild 55 108 2 1 98.2 98.2 98.2

EC

Healthy 72 91 2 1 98.1 98.6 97.7

High 8 156 0 2 98.8 80.0 100

Medium 25 136 3 2 96.9 92.6 97.8

Mild 53 107 3 3 96.3 94.6 97.2

BC

Healthy 69 83 10 4 91.6 94.5 89.2

High 0 153 3 10 92.2 0 98.1

Medium 3 123 16 24 76.0 11 88.5

Mild 44 89 21 12 80.1 78.6 80.9
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Figure 2.9: Performance metrics of classifiers for statistical features (a) DT
(b) SVM (c) EC (d) BC
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Figure 2.10: Statistical analysis – Confusion matrix (a) DT (b) SVM (c) EC
(d) BC
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Table 2.6: Cumulative performance metrics of classifiers for statistical fea-
tures

Performance Measures DT SVM EC BC
Accuracy (%) 99.4 97.6 95.1 69.7

Sensitivity (%) 99.6 95.2 91.5 46.0

Specificity (%) 99.8 99.2 98.2 89.2

PPV (%) 99.0 97.8 94.6 67.6

NPV(%) 1 2.2 5.4 32.3

F-score (%) 99.25 97.3 94.6 70.7
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Figure 2.11: Statistical analysis – ROC for mild event (a) DT (b) SVM (c)
EC (d) BC
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In addition to the accuracy, sensitivity and specificity, an another im-

portant measure to assess the quality of classification models is area under curve

(AUC) value. The receiver operating characteristic (ROC) curve, which is a plot

between the false positive rate (FPR) and true positive rate (TPR), shows the

trade-off between sensitivity and specificity. It indicates the degree of separabil-

ity and conveys how effectively classifiers can distinguish the different classes.

The larger the AUC, the better the accuracy of the classifier. For brevity, the

AUC of mild event is illustrated in Figure 2.11. It is to be remarked that even

though the classifiers effectively differentiate the stages of the subjects based on

statistical features, the major limitation is that the VGRF sensor data may vary

based on the weight of the subjects. The statistical analysis of VGRF sometime

may not act as a real distinguisher of identifying the gait disorder in PD subjects.

Hence, in order to address this issue in the following section we also analyze the

walking pattern of the subjects using the kinematic analysis and extract 9 spa-

tiotemporal features from the walking pattern and select the optimal biomarkers

to differentiate the healthy subjects and PD subjects.
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CHAPTER 3

KINEMATIC ANALYSIS OF GAIT PATTERN

3.1 Introduction

The kinematic gait analysis helps to assess progression of PD. PD

affects the regular walking pattern of the subject and drastically reduces the

number of footsteps, speed, step time, and stride interval. Hence, the study of

gait cycle parameters such as step time, stride time, stance time, swing time,

swing stance ratio, cadence, speed, step length and stride length, which act as

significant biomarkers, help to understand the gait pattern disorder of PD sub-

jects. Since feature selection plays a significant role in identifying the most

discriminative features for efficient classification model, in this study, a corre-

lation based feature selection technique is used to identify a set of informative

and prominent gait attributes for efficient stage classification. Figure 3.1 illus-

trates various gait parameters of a subject during normal walk. The gait pattern

contains 62% of stance interval and 38% of swing interval. In this work, the gait

parameters are split into two components namely temporal and spatial features,

which are briefed below.

Figure 3.1: Different phase representation of gait pattern
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3.2 Related Work

Supervised machine learning techniques can learn the inherent cor-

relations between high dimensional spatiotemporal data using a training dataset

and apply the knowledge gained during training to a new dataset to implement

an automated stage classification of PD (Prashanth et al. 2016). Utility of ma-

chine learning algorithms in pathological gait has been studied using several

machine learning techniques including decision tree (DT), SVM, principal com-

ponent analysis (PCA), and random forest (RF). Some of the machine learning

based PD gait classification techniques that have used wearable sensor data are

briefly reviewed.

Introducing a hybrid model called, locally weighted random forest

(LWRF), Aşuroğlu et al. 2018 presented a computational solution to quantita-

tively monitor the PD motor symptoms. Through regression analysis of ground

reaction force (GRF) signals obtained from force resistive sensors (FSR), they

showed that the PD severity level could be identified rather than a categori-

cal result based on motor disorders. Prashanth & Roy 2018 presented diagnos-

tic models to estimate the stage and severity of PD using the ML algorithms

such as ordinal logistic regression (OLR), SVM and Random forest. Validating

the performance on the dataset from Parkinson’s Progression Markers Initia-

tive (PPMI), which is a large-scale, comprehensive and multicentre to find PD

progression biomarkers, they obtained the classification accuracy of 97.46%.

Abdulhay et al. 2018 utilized a peak detection algorithm to extract the kinetic

features including the heel and toe forces and analyzed the severity level of PD

using fast Fourier transform of tremor signals. Through a pulse duration algo-

rithm for acquiring the temporal features, they achieved an average classification

accuracy of 92.7% using the medium Gaussian SVM. To normalize the sub-

ject’s age, height, weight and walking speed, Wahid et al. 2015 used a multiple

regression normalization strategy and identified the differences in spatiotempo-
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ral gait parameters between healthy controls and PD patients. Subsequently,

quantifying the raw gait data based on the kinematic analysis, they reported

92.6% classification accuracy using the random forest algorithm. Some of the

other notable approaches reported in the literature in the direction of gait vari-

ability assessment are deep learning techniques (El Maachi et al. 2020), wavelet

analysis (Joshi et al. 2017), deterministic learning theory (Zeng et al. 2016) and

convolutional neural network (Zhao et al. 2018b).

In spite of the substantial amount of computational research on diag-

nosis of PD using gait analysis, the quantitative assessment of PD symptoms for

improved stage classification needs finer investigation on hidden gait biomark-

ers. Hence, in this work, we extract the significant spatiotemporal features to

identify the optimal feature vector for the ML algorithms. In the following

section, we briefly define the spatiotemporal features considered for gait classi-

fication.

3.2.1 Temporal features

Step time:It is the time duration between heel strike of one leg and heel contact

of the opposite leg. The approximate step time of healthy subject is 0.8 s.

Stance time: It is the time interval between the contact of the heel to the sur-

face and the contact of the opposite leg when the toes do not touch the surface.

Stance phase starts with the heel strike, and the mid stance is a complete body

weight balance in one leg when another leg is in swing phase.

Swing time: Swing time is observed between the heel strike and toe off phase.

Swing phase starts at the end of stance.

Swing stance ratio (SS ratio): It is a ratio between the swing time and stance

time.

Stride time: It is the time duration between foot ground contact of successive

instants of same foot.
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Cadence: It is the total number of steps/unit time. The nominal values of ca-

dence are: slow :60-70 steps/min, medium: 70-90 steps/min, and normal:90-115

steps/min.

Speed: The total distance covered / unit time gives the speed, and it is measured

in m/sec. Typical values for male and female are 80 m/min, and 70 m/min,

respectively.

3.2.2 Spatial features

Step length: It is the distance between the successive footsteps of heel contact

of two foot steps. Typically, the right foot step length is equal to left foot step

length.

Stride length: It is the distance between the successive foot of heel contact of

the same foot, and it is also called as double step length.

Table 3.1 gives the 9 temporal and spatial features of 93 PD and 73

healthy subjects based on the sum of left and right feet sensor values. It can

be noted that the swing time remains almost same for different stages of PD,

whereas the stance time has relatively considerable fluctuations. The highest

variation can be observed in the features such as cadence, stride length, stride

time and speed. Figure 3.2 shows the temporal and spatial features of both

healthy and PD subjects for different stages. The spatiotemporal features high-

light that the cadence is the most influential factor which has larger variability

due to the severity of PD. Even though the mild and medium stages of PD have

similar cadence, compared to cadence of healthy control, which is 110.325,

subjects with high severity of PD exhibit drastic reduction in cadence which

is around 101.625. Similarly, the second most significant feature is the stride

length, which reads for healthy-1.35, high-0.939, medium-1.115 and the mild-

1.2.
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Table 3.1: Temporal and spatial features of PD and healthy subjects

Spatiotemporal features
Healthy Mild Medium High

Mean SD Mean SD Mean SD Mean SD

Swing Time (s) 0.399 ±0.034 0.389 ±0.051 0.378 ±0.027 0.399 ±0.041

Stance Time (s) 0.696 ±0.060 0.847 ±0.239 0.736 ±0.083 0.713 ±0.058

Stride Time (s) 1.095 ±0.088 1.235 ±0.269 1.114 ±0.099 1.112 ±0.087

SS Ratio (s) 0.575 ±0.038 0.481 ± 0.092 0.518 ±0.053 0.561 ±0.051

Step Time (s) 0.547 ±0.044 0.618 ±0.135 0.557 ±0.049 0.556 ±0.043

Step Length (m) 0.675 ±0.068 0.469 ±0.124 0.558 ±0.098 0.600 ±0.095

Stride Length (m) 1.35 ±0.137 0.939 ±0.248 1.115 ±0.196 1.200 ±0.191

Speed (m/s) 1.241 ±0.160 0.808 ±0.307 1.008 ±0.183 1.083 ±0.169

Cadence (steps/min) 110.325 ±8.847 101.625 ±21.521 108.481 ±9.200 108.625 ±9.006

Figure 3.2: Temporal and spatial features of 4 classes
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3.3 Proposed Methodology
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Figure 3.3: Proposed PD stage classification framework

Figure 3.3 shows the proposed schematic diagram for stage classi-

fication of PD based on H&Y scale. The major objective of this work is to

analyze the gait variability of PD subjects from three different walking patterns

in spatiotemporal domain and unveil the prominent biomarkers to distinguish

the stages of PD based on motor symptoms. Unlike the previous study which

used several gait features for severity rating, the proposed work identifies the

significant spatiotemporal features like step time, stride time, stride length and

cadence based on their rank correlation for early detection and classification. To

avoid the gait initiation and termination effects, the first 20s and the last 10s data

were removed. To minimize the dispersion in gait data and decorrelate the gait
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data from physical parameters like height and weight, the following multiple

regression technique is employed.

yi = β0 +
n

∑
i=1

β jxi, j + εi (3.1)

where yi indicates the dependent spatiotemporal gait feature of the ith observa-

tion; xi, j denotes the jth physical characteristics like walking speed, age, height

and weight; β represents the unknown regression coefficients; and εi indicates

the residual error for the ith observation. After normalizing the gait data, the

spatiotemporal features are extracted and the normal distribution of the gait fea-

tures is assessed using the Shapiro-Wilk test with the confidence bound for the

hypothesis test being 5%. For optimal feature vector selection, a Pearson rank

correlation is computed for the spatiotemporal features. Finally, identifying the

significant biomarkers based on rank correlation, the four supervised machine

learning algorithms namely DT, SVM, EC and NB are employed to extract the

hidden pattern in gait data and stage classification.

3.4 Classifier performance assessment

Figure 3.4 shows the kinematic features of healthy and PD subjects

for both left and right legs. Comparing the left leg VGRF signals of healthy and

PD subjects reveal that the signal amplitude for healthy are almost double as PD

subjects amplitude. In addition, the stride phase of PD subjects is relatively less

compared to healthy because of the movement disorder. To select optimal fea-

ture set from spatiotemporal features, a Pearson rank correlation based feature

selection technique is used. Among the 15 spatiotemporal features, 9 features

which have significant correlation are chosen.
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(a) Heathy subject’s left leg (b) PD Patient’s left leg

(c) Heathy subject’s right leg (d) PD Patient’s right leg

Figure 3.4: Kinematic parameters of healthy subjects and PD patients

Figure 3.5, which shows the correlation matrix plot, reveals that the

spatiotemporal features have both positive and negative correlation. For in-

stance, the step time and stride time are highly positively correlated. However,

the cadence and stance time are highly negatively correlated.
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Figure 3.5: Correlation matrix plot

Table 3.2 presents the performance metrics for each stage of the clas-

sification assessed using the kinematic features, and the three metrics are illus-

trated in Figure 3.6. The confusion matrix, shown in Figure 3.7, highlights that

the positive predictive value and false discovery rate of DT and SVM are same

for the kinematic features. Excluding the medium stage of PD, all other stages

are classified with 100% accuracy. Hence, DT and SVM offer the least misclas-

sification rate of around 4%. However, the misclassification rate of BC, which

is around 30%, is the highest at each stage.
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Table 3.2: Kinematic features based performance metrics for four stages of
classification

Classifier Stage TN TP FN FP Accuracy Sensitivity Specificity

DT

Healthy 73 93 0 0 100 100 100

High 10 156 0 0 100 100 100

Medium 27 139 1 0 99.4 100 99.3

Mild 55 111 0 1 99.4 98.2 100

SVM

Healthy 73 93 0 0 100 100 100

High 10 156 0 0 100 100 100

Medium 27 138 1 0 99.4 100 99.3

Mild 55 110 0 1 99.4 98.2 100

EC

Healthy 72 91 2 1 98.1 98.6 97.8

High 8 156 0 2 98.8 80 100

Medium 25 136 3 2 96.9 92.6 97.8

Mild 53 107 3 3 96.3 94.6 97.2

BC

Healthy 69 83 10 4 89.2 94.5 82.5

High 0 153 3 10 89.9 0 97.5

Medium 3 123 16 24 74.4 11 87.6

Mild 44 89 21 12 82.2 64.1 88.7
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(a)

(b)

(c)

(d)

Figure 3.6: Performance metrics of classifiers - kinematic analysis (a) DT
(b) SVM (c) EC (d) BC
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Figure 3.7: Kinematic analysis - Confusion matrix (a) DT (b) SVM (c) EC
(d) BC
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Figure 3.8: ROC curve for mild event (a) DT (b) SVM (c) EC (d) BC
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Table 3.3: Cumulative performance evaluation of classifiers for kinematic
features

Performance Measures DT SVM EC BC
Accuracy (%) 99.4 99.4 95.2 69.9

Sensitivity (%) 99.6 99.6 91.6 42.4

Specificity (%) 99.8 99.8 98.2 89.1

PPV (%) 99.0 99.0 95.3 65.7

NPV(%) 1 1 4.7 34.3

F-score (%) 99.25 99.25 93.1 72.1

Table 3.3 gives the cumulative performance metrics of each classifier

for different stages of PD. Moreover, to highlight the misclassification for the

mild stage of PD, the ROC and AUC of 4 classifiers are shown in Figure 3.8.

To extend the AUC for a multi-class problem, we utilize the averaging pairwise

comparison approach because it gives an overall measure of how effectively

each class is differentiated from other classes.
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Table 3.4: Comparison of accuracy of proposed and other reported approaches

References Features Classifiers Accuracy

Khoury et al. 2019b Time domain K-NN, CART,
SVM, and GMM

80-91 %

Elkurdi et al. 2018 Kinematic features DT, SVM and
KNN

86.19–92.9 %

Alam et al. 2017 Left and right
VGRF signals

SVM, KNN,
RFDTC

93.6 %

Martínez et al. 2018 Kinematic features Linear Discrimi-
nant Model

64.1 %

Zeng & Wang 2015 Kinematic features RBFNN 93.1 %

Zeng et al. 2016 Kinematic features RBFNN 96.39 %

Perumal & Sankar 2016b Time and Fre-
quency domain

LDA, SVM and
ANN

86.9 %

Prabhu et al. 2018 Time domain fea-
tures

SVM, PNN 96.15 %

Proposed framework Spatiotemporal
features

DT 99.4 %

Finally, the performance validation of the proposed method to the

state-of-the-art methods, which used the same gait dataset from Physionet, is re-

ported in Table 3.4. It can be noted that the accuracy of the proposed approach

is significantly better than those of the other methods and distinguishably the

present work utilizes the minimum feature set formed using the spatiotemporal

variables. Hence, utilizing the spatiotemporal features can significantly improve

the classification accuracy and the proposed approach can serve as a tool for

early diagnosis and severity rating of PD based on the clinical symptoms ob-

tained through foot pressure analysis. In this direction, the major contributions

of this work are as follows. 1. An automatic and non-invasive gait classifica-

tion framework to predict the severity of PD using the spatiotemporal features

obtained from the foot worn force sensor data is presented. 2. To minimize the

dispersion in gait data and decorrelate the gait data from physical parameters

like height and weight, a multiple regression normalization approach is used. 3.
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The significant gait biomarkers from spatiotemporal features are obtained using

the correlation based feature extraction technique . To avoid overfitting and im-

prove the classification accuracy, 10 fold cross validation technique is used. 4.

The performance of four supervised machine learning algorithms to predict the

stages of PD based on H&Y scale has been assessed using the confusion matrix

and area under curve.

3.5 Limitations

Even though the proposed kinematic analysis approach provides bet-

ter classification accuracy compared to other methods reported on the same

dataset, it is also important to mention the limitations of the proposed study.

In the current study, we considered only the significant motor symptoms of

PD for classification. However, to improve the prediction rate, the non-motor

symptoms can also be considered. Moreover, in addition to the gait pattern,

the tremor dataset can also be assessed for enhancing the accuracy of the stage

classification. Finally, we have considered only the supervised linear classifiers

for identifying the stages of PD. Nonetheless, the nonlinear classifiers can be

employed for extracting the nonlinear relationships especially when the tremor

data is considered along with the gait pattern.
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CHAPTER 4

CNN FOR PD DIAGNOSIS

4.1 Introduction

From diagnostic point of view, gait analysis is an important approach

because the PD patients manifest the gait abnormalities as one of the earliest

symptoms(Alharthi et al. 2019). Hence, the gait assessment can be used for

early diagnosis of PD. The Parkinsonian gait is primarily characterized by a

large stride to stride variability, a slow gait cycle, a long stance phase and a flat

foot-to-toe off. To identify the presence of PD, generally, the clinicians assess

the walking pattern by visual inspection along with the UPDRS. Notwithstand-

ing, the gait evaluation is highly subjective because it largely depends on the ex-

pertise of the clinician and there is no powerful tool available to predict the pres-

ence of PD (Alharthi & Ozanyan 2019; Schwab & Karlen 2019). Moreover, the

progression of PD varies according to the age, health condition and other in-

trinsic factors. In order to alleviate the misdiagnosis problems due to manual

assessment, automated systems are being designed to classify the PD from gait

cycle. Even though gait analysis based PD diagnosis has attracted considerable

attention, for quantitative assessment of PD and its stages, a finer investigation

on the hidden gait biomarkers is needed for realizing an effective classifier tool

that can assist the clinicians in their daily diagnosis of PD.

In literature, machine learning based feature extraction methods have

been widely used for PD diagnosis.However, the manual preprocessing and fea-

ture extraction will always have limitations in their capacity to diagnose. Hence,

in this work, to overcome such manual feature extraction, we put forward a novel
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gait classification technique using deep convolutional neural network (DCNN)

for automatic detection and severity rating of PD. The VGRF gait dataset ob-

tained using foot worn sensors from Physionet is used for assessing the efficacy

of the proposed approach (web 2019). Fusing the feature learning and classifica-

tion tasks into one single entity, the DCNN avoids the need for hand-crafted fea-

ture extraction approach with the help of the convolution and pooling operations

(Zhou et al. 2019). To test the performance, the experiments are implemented

in Keras platform for different input frame sizes.

In this clinical context, the major contributions of this work are three-

fold. Firstly, we analyze 1D and 2D DCNN architectures for different frame size

to assess the performance of one dimensional input signal method and two di-

mensional image input method in CNN framework. Secondly, the performance

of the proposed DCNN architecture to classify the severity of PD is assessed

based on modified H & Y scale using gait pattern obtained for three different

walking scenarios such as 1. walking on a level ground 2. walking on a tread-

mill and 3. walking with rhythmic auditory stimulation. Thirdly, utilizing the

stochastic gradient descent algorithm for CNN loss function optimization and

L2 regularization technique to avoid data overfitting, we achieve an average

stage classification accuracy of 98.45 % for PD stage prediction.

4.2 Related work

This section reviews related work on PD diagnosis especially based

on gait signal analysis. Several methods to quantitatively assess the gait vari-

ability for PD diagnosis have been reported. Particularly, the gait assessment

using the time-frequency domain, spatio-temporal domain using machine learn-

ing algorithms and the deep learning approach are discussed.

Kim et al. 2018 proposed a CNN structure for quantifying the sever-
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ity of PD patients based on UPDRS scale. Using the custom designed wear-

able device fitted with a tri-axial accelerometer and a gyroscope, they collected

tremor signals from 92 patients and transformed the accelerometer and gyro-

scope signals into a two-dimensional image representation for CNN input. They

considered the categorical cross-entropy as the loss function and used 10 fold

cross validation technique to avoid data overfitting. Through hyper-parameters

of CNN that could discriminate the level of tremor severity, authors achieved

a better classification accuracy of 85 % compared to other machine learning

classifiers. However, the repeatability of the CNN model to quantify the tremor

needs to be assessed when the change happens in patients state and environmen-

tal conditions.

To assess the neurological state of the patients and model the transi-

tions during start and stop movements, Vásquez-Correa et al. 2018 proposed a

deep learning architectures based multimodal assessment technique, fusing the

information from three modalities: speech, handwriting and gait. The specific

motor impairments in lower/upper limbs and in speech were examined to clas-

sify the stages of PD based on MDS-UPDRS scale. Based on the interpretation

of the feature map obtained from CNN, they not only showed that the classi-

fication accuracy could be improved but also evaluated the robustness of their

approach through the speech impairment analysis in three different languages:

Spanish, German and Czech. It was reported that even though the gait and

speech analysis could provide better results compared to handwriting assess-

ment, to address the influence of the language further experiments on sentences,

texts and spontaneous speech signals could be performed.

For diagnosing the presence of PD, Abdulhay et al. 2018 utilized a gait and

tremor signals from Physionet and presented a peak detection and pulse duration

measuring techniques to extract the spatiotemporal features. To pre-process the

raw VGRF dataset, they employed a type II Chebyshev high pass filter and ob-
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tained the kinematic features such as swing time, stride time, heel strike and toe

off in order to build a feature set based on foot strike profile variability. Trans-

forming the time series data into frequency domain using fast fourier transform

(FFT) for distinguishing the amplitude variation, they used power spectral den-

sity of tremor signals to differentiate between tremor at rest and other tremors

with respect to frequency characteristics. Medium tree and medium Gaussian

support vector machine (SVM) were used to classify the healthy subjects and PD

patients. However, this approach was limited to binary classification wherein

only the presence of PD was diagnosed and the stages were not identified.

Pereira et al. 2018 put forward a hand written dynamics assessment

technique for PD identification. Using the smart pen that captures the fingergrip,

axial pressure, tilt and acceleration in X, Y and Z directions, they conducted six

handwritten exams: 1. Drawing circles on a paper 2. Drawing spirals 3. Draw-

ing in the air 4. Drawing meanders 5. Left-wrist movements and 6. Right-wrist

movements. To capture different information from each exam and improve the

classification accuracy, ensemble of CNNs, which were trained over six differ-

ent handwriting exams, were used. By mapping the signals extracted from the

time-series-based images drawn by control group and PD patients, they com-

pared the performance of machine learning algorithms with those of the two

distinct CNN architectures. Even though better classification accuracy was ob-

tained using CNN architecture compared to machine learning approaches, the

paper does not report any approach for reducing the dimensionality of the fea-

ture space.

For early detection and monitoring of PD, Perumal and Sankar in-

vestigated the effect of using both gait and tremor features obtained from the

wearable sensors (Perumal & Sankar 2016a) . Extracting the kinetic and spa-

tiotemporal features from gait cycle, they employed a linear discriminant anal-

ysis (LDA) classifier to distinguish between control subjects and PD patients.
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In tremor analysis, to improve the frequency resolution and reduce the spectral

leakage, a Haan window was utilized. One of the significant contributions of

their work was that based on the frequency-domain characteristics they identi-

fied a PD tremor from other tremors due to atypical Parkinsonism. Testing the

performance of the approach using the dataset from Physionet, they achieved an

average classification accuracy of 86.9 %. Nevertheless, the approach is limited

to binary classification problem and does not report the stages of PD based on

any standard scale.

Several previous studies have reported results on the gait classifica-

tion based on the VGRF dataset available in Physionet. Those studies have ana-

lyzed the hand-crafted features using conventional machine learning algorithms

for classification. However, in spite of the great potential of deep learning in

promoting bioinformatics and healthcare research, there are no significant re-

sults available in the literature on applying the deep learning methodologies for

gait variability analysis and PD diagnosis. Hence, the major focal point of this

work is to analyze the performance of the convolutional neural networks for

classification based on both 1D and 2D architectures.

4.3 Methodology

4.3.1 CNN Overview

CNN, which derives a biological inspiration from the visual cortex, is

a class of deep feed-forward artificial neural networks (El Maachi et al. 2020).

The two major limitations of shallow neural networks which led to the devel-

opment of CNN are as follows. Firstly, in shallow neural network the num-

ber of parameters is huge. For instance, consider a hidden layer consisting of

N1 nodes and the subsequent output layer having N2 nodes. Then, the num-

ber of parameters between these nodes is N1×N2 which not only results in
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large number of parameters but also causes overfitting issue and slows down

the training and testing processes (Fawaz et al. 2019). Secondly, the shallow

neural network ignores the correlation between the input features because it

considers each input feature independently. Hence, to overcome these two is-

sues CNN was put forward with two interesting features: sparse connectivity

and weight sharing (Camps et al. 2018). CNN was introduced by LeCun in

1989. Hand written character recognition was the first successful real-world

application of CNN demonstrated by LeCun through their proposal of LeNet

in 1998 (Cao et al. 2018). However, due to black-box based processing, CNN

did not receive much of research attention until the significant contribution

by Krizhevsky et al in 2012 (Li et al. 2019). In the ImageNet Challenge in

2012, Krizhevsky et al. put forward AlexNet, which was similar to archi-

tecture in LeNet but deeper, for the large scale visual recognition competi-

tion and outperformed all of their competitors by achieving a winning top-5

test error rate of 15.3 % compared to the second best of 26.2 %. Indeed,

it was the breakthrough in the area of deep learning and subsequently, other

architectures based on CNN such as VGGNet (Simonyan & Zisserman 2014),

GoogleNet (Szegedy et al. 2015), DenseNet (Huang et al. 2017), and Residual

Net (He et al. 2016) were proposed.

In this work, the CNN model is employed for extracting the hid-

den biomarkers from gait pattern for effective severity rating of PD. Figure 4.1

shows the proposed DCNN architecture for predicting the stages of PD based

on modified H & Y scale. The time series data obtained from the VGRF sen-

sors is given as an input to DCNN. The DCNN has four types of layers namely

convolution, pooling, fully connected and softmax.
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Figure 4.1: Proposed DCNN architecture for gait classification

4.3.2 DCNN architecture for gait classification

i. Convolutional layer: It consists of set of learnable filters that move over the

input data based on the kernel function to capture the significant features. The

input is convolved with the kernel function based on the following equation.

cm =
N−1

∑
n=0

fnkm−n (4.1)

where k, c, N and f indicate input signal, convolved output, number of data

points in k and filter, respectively. The subscript n denotes the nth parameter of

the filter vector and m indicates the mth output element to be computed. When

n varies from 0 to N−1, the filter function fn is convolved with the input signal

km−n. After the convolution operation, the convolved matrix is given to the rec-

tified linear unit (ReLU) activation function to account for nonlinearities in time

series data. ReLU, as illustrated in Figure 4.2, is a piecewise linear function

which basically outputs 0 when it gets a negative input value and the value itself

in any other case. ReLU does not saturate and is computationally very efficient

(Arifoglu & Bouchachia 2019). Moreover, it converges faster than other nonlin-

ear thresholding functions like sigmoid/tanh. The mathematical representation

of ReLU is as follows.
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Figure 4.2: ReLU activation function

ReLU(z) = max(0,z) =

z z > 0

0 z≤ 0
(4.2)

ii. Pooling layer: The feature map obtained from the nonlinear threshold func-

tion passes through the pooling layer to downsample the feature map/activation

map and extract the most representative features. Basically, the pooling layer

minimizes the number of parameters to be learnt and the computations to be

performed in the network (He et al. 2020). Providing a summary statistic of

nearby outputs, pooling layer majorly performs dimensionality reduction and

guarantees translation invariance. The hyperparameters of pooling layer are fil-

ter size ( fs), stride window (s) and type of pooling, which are commonly either

max pooling or average pooling.

iii. Fully connected (FC) layer: It connects each neuron in one layer to ev-

ery neuron in other layer. In general, the DCNN process is classified into two

major groups namely feature extraction and classification (Basha et al. 2020).

The convolution layer along with the pooling layer is responsible for feature

extraction and the fully connected layer and softmax layer handle the decision

making process (San-Segundo et al. 2019). For instance, the convolution layer
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receives an input dimension of HXWXD and generates a feature map of dimen-

sion H ′XW ′XD′. The resultant output activation function map is flattened into

a single column vector, and fed as an input to the FC layer. The output of the

nodes in FC layer is determined as follows.

xi = bi +∑
j

ω jiy j (4.3)

where ω and b indicate the weights and biases, respectively. x and y are the

output of the current and previous layers. Subsequently, the output from the FC

layer is fed into softmax layer to predict the classes.

iv. Softmax layer: It converts the class scores from FC layer into a probabil-

ity mass function (Xia et al. 2018). Taking a K-dimensional vector of arbitrary

real-valued score z, the softmax function in (4.4) squashes it to a K-dimensional

vector f (z) with values ranging from 0 to 1.

f j(z) =
ez j

∑
K
j=1 ezk

(4.4)

Hp′(p) =−∑
i

p′ilog(pi) (4.5)

pi ∈ (0,1) : ∑
i

pi = 1∀i (4.6)

where p is the predicted probability distribution, p′ is the true distribution and

i indicates the different classes. For the multi-class classification, the softmax

layer utilizes the cross entropy function given (4.5). Typically, CNN training it-

eration comprises forward and backward passes (Acharya et al. 2018). Forward

pass results in a loss which computes the discrepancy between the truth and the

current predictions. Then, backward pass through the backpropagation deter-

mines the gradient and the negative of the gradient indicates the steepest descent

direction (Saba et al. 2019). For the optimization of DCNN loss function, the

following SGD technique, which updates the parameters using Jacobian matrix,
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is employed.

ωt+1 = ωt−η
∂z

∂ωt
(4.7)

where η is the learning rate. Unlike the gradient descent, which iteratively de-

termines the gradient of the loss function L with respect to model parameters

ω and updates them, the SGD computes the gradient of the loss function and

updates for mini-batch of n training samples xi and labels yi. One of the key

advantages of SGD is that even with a large training dataset, the computational

time for each update does not grow exponentially (Arcos-García et al. 2018).

To prevent overfitting in DCNN training, the L2 regularization technique, which

is also called ridge regression, is used. Equation 5.8 represents the regularized

objective function.

L̂(ω,X) = L(ω,X)+λR(ω) = L(ω,X)+λ∑
i
|ω2

i | (4.8)

where λ is the regularization strength, which adjusts the relative contribution of

the norm penalty term R(ω) with respect to the standard loss function L(w,X).

Since R(ω) is convex, when it is added to the convex loss function, the aug-

mented function is still be convex.

Figure 4.3 shows the proposed DCNN architecture based on 1D and

2D CNN for discriminating the stride variability which can help to classify the

stages of PD. The raw gait data is preprocessed before applying it to the DCNN.

For 1D, two frame sizes such as 300×1 and 500×1 are considered. Similarly,

for 2D, the two frame sizes considered are 300×18 and 500×18 because the

gait dataset consists of 16 VGRF sensor data and 2 cumulative values of left and

right sensors.
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Figure 4.3: DCNN framework for PD severity prediction

4.4 Experimental Results and Discussion

Each gait sample contains 18 columns of data which include the 16

VGRF sensor signals along with 2 cumulative values from each foot. To re-

move the gait initiation and end-up effects, the first 20s and the last 10s data

are removed, and the pre-processed gait signal is fed into DCNN. The datasets

Ga(Toledo et al. 2005b) , Ju(Hausdorff et al. 2007) and Si(Yogev et al. 2005) con-

tain sample size of about 13500, 11730, and 7700, respectively. Since each

dataset has different sample size, to make them with equal length, the datasets

are divided into input segments of 300 and 500 frames. In this approach, we

have chosen 300×1 and 500×1 input frames for training the 1D DCNN with
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the segment size 73,224 and 43,704, respectively. Table 4.1 gives the configura-

tion parameters of 1D DCNN, which contains 4 convolutional layers, 4 average

pooling layers, 2 fully connected layers and a softmax layer. Intermediate layers

utilize ReLU as an activation function because ReLU results in reduced likeli-

hood of the gradient vanishing. In fully connected layer, 50 input and 4 output

layers are configured based on the four classes of PD. To measure the difference

between the predictions and targets, the categorical cross-entropy was chosen

as the loss function for training the DCNN. The deep learning network adjusts

its weights adaptively to minimize the loss using SGD. The learning rate for

SGD was initialized to 0.001 and the weights were assigned to random num-

bers with a uniform distribution. To avoid, the data overfitting, L2 regularization

technique is used, and the softmax layer is employed to normalize the DCNN

outputs, which sum up to one. For validation, the gait dataset is divided into

80 % and 20 % for training and testing, respectively. The network is trained

for up to 120 epochs, and the experiments are conducted in Keras library using

TensorFlow backend.

Table 4.1: 1D DCNN configuration

Model layers Filter Activation
Layer output

Parameters Stride
300X1 500X1

Conv1 12 ReLU 300X12 300X12 48 (1,1)

Max-Pooling 2 - 150X12 150X12 0 (2,2)

Conv2 24 ReLU 150X24 150X24 888 (1,1)

Max-Pooling 2 - 75X24 75X24 0 (2,2)

Conv3 48 ReLU 75X48 75X48 3504 (1,1)

Max-Pooling 2 - 37X48 37X48 0 (2,2)

Conv4 96 ReLU 37X96 37X96 13920 (1,1)

Max-Pooling 2 - 18X96 18X96 0 (2,2)

Fully connected 100 ReLU 50 50 86450 -

Fully connected output 4 Softmax 4 4 36 -
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To assess the significance of left and right pairs of VGRF data to

classify the stages of PD, firstly we tested from L1 &R1 to L8 & R8. Table 4.2

gives the accuracy, sensitivity and specificity for each pair configuration of 1D

DCNN. The performance metrics reveal that among all the pairs the L8 & R8

combination gives the highest accuracy, sensitivity and specificity. The key rea-

son for this increased accuracy with the L8 and R8 combinations is that among

the 8 sensors positioning, L8 and R8 sensors are the initial point of contact with

the ground while walking. Hence, in both stride phase and stance phase, L8 and

R8 generate relatively higher plantar pressure and results in better feature rep-

resentation. However, when the respective left and right pairs of VGRF signals

are independently used, the accuracy is relatively less, which can be attributed

to minimum number of segments in the input frame. Hence, the combination of

all 18 VRGF signals is utilized for training the DCNN so that the network can

implicitly learn more significant biomarkers from the gait pattern.

Firstly, for 1D DCNN, two input frames 300×1 (F1) and 500×1(F2)

are tested to assess the impact of the input frame size on the classifier perfor-

mance. Figure 4.4 illustrates the VGRF input data for 300 and 500 frames. It is

worth noting that the VGRF plot is the signal acquired from one of 16 sensors.

Figure 4.4(a) manifests that the gait cycle comprises one stride phase and swing

phase. However, Figure 4.4(b) that corresponds to F2 input frame consists of

two swing phases and two stride to stride variabilities. Hence, the larger input

frame contains more kinematic features that can assist the deep learning network

to identify the prominent biomarkers during the training phase.
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Table 4.2: Segment level impact of input signals on PD Diagnosis

VGRF Inputs Acc(%) Sen(%) Spe(%)

L1 & R1 64.14 60.59 83.21

L2 & R2 63.16 55.89 82.54

L3 & R3 59.44 51.81 80.03

L4 & R4 64.15 59.41 83.30

L5 & R5 68.73 63.74 85.68

L6 & R6 65.05 58.83 83.70

L7 & R7 66.55 62.59 84.82

L8 & R8 71.63 64.71 87.36
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Figure 4.4: Gait time series plot - 1D CNN (a) 300X1 (b) 500X1
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(a)

(b)

Figure 4.5: Confusion matrix - 1D DCNN (a) 300X1 (b) 500X1

In order to quantify the performance of the classifier model, the per-

formance metrics such as the accuracy, sensitivity and specificity is computed

from the confusion matrix shown in Figure 4.5. The diagonal values of the con-

fusion matrix indicates the maximum accuracy of each class. For instance, the

1D DCNN with F1 input frame predicts the “healthy” class with an accuracy

of 94.3 whereas the F2 input frame predicts the same class with the accuracy

of 97.25. To further quantify the classifier performance, six metrics used for

objective performance comparison are given in Table 4.3. The specificity of all

the classes in the case of F2 input matrix is higher than those of similar classes

in F1 input matrix. Hence, the DCNN has demonstrated that it can effectively
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exclude the patients without the disease being recognized as PD. Likewise, it

can be noted that the F-score is relatively same among the classes, which cor-

roborates that the proposed approach is relatively consistent in predicting the

classes.

Table 4.3: Performance metrics for 1D DCNN

Performance metrics
300X1 500X1

Healthy WOIB WIB WIPR Healthy WOIB WIB WIPR

Acc (%) 96.31 96.88 98.37 98.29 96.69 97.39 98.53 99.55

Sen (%) 98.43 95.23 91.06 84.16 97.00 95.55 95.1 95.24

Spe (%) 94.73 97.78 99.69 99.63 96.45 98.42 99.13 99.84

PPV (%) 93.31 95.91 98.19 95.51 95.41 97.12 95.41 97.56

F-score 0.95 0.96 0.94 0.89 0.96 0.96 0.95 0.96

MCC 0.93 0.93 0.94 0.89 0.93 0.94 0.95 0.96

Figure 4.6, which shows the accuracy plots for two input frames,

highlights that compared to F1, the overfitting is significantly reduced in the

case of F2 input frame. Furthermore, the maximum training accuracy of 300

and 500 frames are 0.97 and 0.98, respectively. From Figure 4.7 that illustrates

the loss function for both the input frames we can note that the F2 frame has the

minimum loss function of 0.061 compared to F1 frame that has 0.592.
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(a)

(b)

Figure 4.6: Accuracy plot - 1D DCNN (a) 300X1 (b) 500X1
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(a)

(b)

Figure 4.7: Loss plot - 1D DCNN (a) 300X1 (b) 500X1

4.4.1 2D DCNN performance analysis

The fundamental difference between 1D and 2D DCNNs is that the

array input in 1D is replaced with the matrix input in 2D. Hence, The gait cycle

dataset is organized in a 2D matrix, and the 2D DCNN performance is tested for

two frame configurations: F×18 (F:300,500). Figure 4.8 shows the 2D inputs

frames of 300×18 (F3) and 500×18 (F4) segments. Unlike 1D DCNN, which
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takes each foot worn sensor signal individually as a vector, the input frame for

2D DCNN reads the 16 sensor data along with two cumulative values of both

left and right foot for each epoch. Table 4.4 gives the layer configuration of 2D

convent, which comprises 3 convolutional layers and 3 average pooling layers.

The filter size for the 3 convolutional layers are 12, 24, and 48 and for the fully

connected layer the filter size is 100. The kernel functions in the convolutional

layer have a stride window of (1,1). For dimensionality reduction and extracting

the key features in the pooling layer, the stride window of (2,2) is used. To

regularize the network during training, for each mini-batch, some of the neurons

from the fully connected layers are randomly dropped, thereby enabling the

classifier model to learn from a subset of input features rather than using the

entire input feature set.

Table 4.4: 2D DCNN configuration

Model layers Filter Activation
Layer output

Parameters Stride
300X18 500X18

Conv1 12 ReLU 50X12X12 50X15X12 984 (1,1)

Average-Pooling 2 - 25X6X12 25X7X12 0 (2,2)

Conv2 24 ReLU 25X6X24 25X7X24 2616 (1,1)

Average-Pooling 2 - 12X3X24 12X3X24 0 (2,2)

Conv3 48 ReLU 12X3X48 12X3X48 10416 (1,1)

Average-Pooling 2 - 6X1X48 6X1X48 0 (2,2)

Fully connected 100 ReLU 100 100 28900 -

Fully connected output 4 Softmax 4 4 404 -
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Figure 4.8: 18 VGRF input pattern - 2D DCNN (a) 300X18 (b) 500X18
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(a)

(b)

Figure 4.9: Confusion matrix - 2D DCNN (a) 300X18 (b) 500X18

To evaluate the effective stage classification of 2D DCNN, the confu-

sion matrix for the two input frame configurations F3 and F4 is shown in Figure

4.9. For all four classes, the misclassification rate in the case of F4 frame is less

than that of the F3 frame. From Table 4.5, which gives the performance met-

rics of 2D DCNN, it can be noted that the 500 frames have better MCC of 0.96

compared to 0.89 in the case of 300 frames.
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Table 4.5: Performance metrics for 2D DCNN

Performance metrics
300X18 500X18

Healthy WOIB WIB WIPR Healthy WOIB WIB WIPR

Acc (%) 94.48 93.82 96.12 98.57 97.55 97.83 98.83 99.41

Sen (%) 93.12 90.97 89.23 93.44 97.24 97.23 95.41 95.65

Spe (%) 95.55 95.33 97.54 98.98 97.77 98.17 99.48 99.68

PPV (%) 94.30 91.19 88.18 87.96 96.91 96.85 97.19 95.65

F-score (%) 0.93 0.91 0.87 0.90 0.97 0.97 0.96 0.95

MCC 0.89 0.86 0.86 0.89 0.95 0.95 0.96 0.95

(a)

(b)

Figure 4.10: Accuracy plot - 2D DCNN (a) 300X18 (b) 500X18
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(a)

(b)

Figure 4.11: Loss plot - 2D DCNN (a) 300X18 (b) 500X18

Figure 4.10 illustrates the accuracy plot of 2D DCNN for all the

walking patterns corresponding to the two input frames. It can be noted that

validation accuracy increases as the training accuracy increases. Moreover, even

though both the test inputs converge quickly, the F4 has better validation accu-

racy compared to F3 input frame. Figure 4.11, which illustrates the loss function

plots, substantiate that for the 2D CNN, the loss function value in F3 is 0.76,

whereas for F4 is 0.33. Hence, these values substantiate that the prediction ac-

curacy improves with the increase in the segment size. Moreover, to assess the

performance of the DCNN in classifying the four stages of PD, the statistical

distribution of the performance metrics across different classes is computed.
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Figure 4.12 illustrates the boxplot of accuracy, sensitivity and speci-

ficity distributions for all four input patterns under study. Compared to 1D

DCNN with F2 input frame that has the accuracy of 98.01 %, 2D DCNN with F4

input frame offers better accuracy of 98.45 %. Similarly, the sensitivity of the F2

and F4 input frames are 95.72 % and 96.63 %, respectively. From the boxplot,

we can note that the image input method with enhanced frame size offers better

performance than the time series based input method with 1D DCNN. The key

reason for the improved performance with 2D DCNN is that large frame size

contains more discriminative biomarkers for input classification. Moreover, un-

like 1D DCNN which processes each VGRF sensor data individually, the 2D

DCNN, which receives the fixed window of all 16 VGRF sensor time series

data, gets both spatial and temporal information. Hence, the 2D can learn more

discriminative features to classify the PD gait. From these performance met-
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rics, it is evident that the 2D DCNN with higher frame size offers better stage

classification.

Finally, Table 4.6 gives the comparison of the proposed approach

with those of the previous approaches, which have used gait pattern for PD

diagnosis. We can note that the proposed approach outperforms the other ap-

proaches and is effective in classifying the four stages of PD. Furthermore, it

can be noted that unlike the machine learning based approach that need the

manual feature selection, the DCNN does not require the hand-crafted features

and extracts the important biomarkers automatically from the gait pattern.

Table 4.6: Comparison of proposed approach with other reported methods

References Features Classifiers Acc (%) Sen (%) Spe (%)

Ertuğrul et al. 2016 Local binary patterns MLP 88.8 88.9 82.2

Perumal & Sankar 2016a Spatiotemporal LDA 87.5 72.0 81.0

Wu et al. 2017 Entropy parameters SVM 84.48 72.41 96.5

Zeng et al. 2016 Deterministic learning RBF NN 96.39 96.77 95.89

Khoury et al. 2019a Spatiotemporal RF 90.91 85.35 88.35

Proposed CNN based features DCNN 97.1 96.38 98.77
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CHAPTER 5

LSTM FOR PD DIAGNOSIS

Deep learning has a huge potential in healthcare for uncovering the

hidden patterns from large volume of clinical data to diagnose different dis-

eases. This work presents a novel deep learning architecture based long short

term memory (LSTM) network for severity rating of Parkinson’s disease (PD)

using gait pattern. Unlike machine learning (ML) algorithms, the LSTM net-

work avoids the need for hand crafted features and learns the long-term temporal

dependencies in the gait cycle for robust diagnosis of PD. The primary advan-

tage of the LSTM network is that it solves the vanishing gradient problem by

introducing the memory blocks in place of self-connected hidden units, thereby

deciding when to learn new information. Three distinct gait datasets containing

vertical ground reaction force (VGRF) recordings for different walking scenar-

ios are used for training the LSTM network.

To avoid data overfitting, the proposed approach utilizes dropout and

L2 regularization techniques. For solving the cost function, Adam, a stochas-

tic gradient-based optimizer, is employed and the severity of PD is categorized

based on unified Parkinson’s disease rating scale (UPDRS) and Hoehn and Yahr

(H&Y) scale. The experimental results reveal that Adam optimized LSTM net-

work can effectively learn the gait kinematic features and offer an average accu-

racy of 98.6% for binary classification and 96.6% for multi-class classification,

with an accuracy improvement of 3.9% in comparison with the related tech-

niques.
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5.1 Motivation

Recently, considerable results have been reported on the efficacy of

ML algorithms to predict the stages of PD using gait analysis. However, the ma-

jor limitation of the ML algorithms is that they require hand-crafted features for

efficient classification. Generally, the hand-crafted features are not only compu-

tationally intensive because of high dimension but also not robust. Hence, the

deep learning algorithms that do not require the manual hand-crafted features

are currently being explored for robust and reliable diagnosis. Automatic stage

classification of PD using deep neural networks (DNN) has gained considerable

attention in the recent years. Nevertheless, the potential of DNN in classifying

the severity of PD based on gait analysis has not been fully exploited, especially

in terms of acquiring the hidden patterns from VGRF signals and diagnosing

the severity of PD based on H & Y scale. Hence, in this work, a class of re-

current neural network (RNN), called LSTM, is explored to learn the long-term

temporal dependencies in gait pattern for robust diagnosis of PD severity.

LSTM solves the vanishing gradient problem in vannila RNN by in-

troducing the memory blocks in place of self-connected hidden units. These

memory units enable the learning network to decide when to learn new infor-

mation and when to discard old information. In this direction, the major con-

tributions of this paper are as follows. 1. We present a gait based automatic

and non-invasive PD stage diagnosis system using LSTM classifier. Firstly, the

binary classification of PD is addressed by exploiting the long-term temporal

gait sequence. Subsequently, the severity rating of PD is identified based on

UPDRS and H & Y scale. 2. The performance of LSTM classifier is tested on

the VGRF gait dataset, which includes three different walking scenarios. More-

over, to avoid data overfitting, the proposed approach utilizes dropout and L2

regularization techniques. 3. Adam optimizer, which has less memory require-

ment and few hyper parameters tuning, is employed to solve the cost function.
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The LSTM classifier has achieved an average accuracy of 96.6% for multi-class

classification and provides 3.9% improvement in overall accuracy compared to

the existing techniques.

5.2 Related work

Zhao et al. 2018c proposed a two-channel model which fuses LSTM

and CNN to automatically rate the PD severity from gait pattern. To capture the

spatio-temporal features from gait data acquired using the force sensors, they

designed the hybrid model for both binary and multi-class classifications and

achieved the accuracy of 98.61%. Based on free-speech in uncontrolled back-

ground conditions, Braga et al. 2019, proposed a ML based methodology to de-

tect the early signs of PD. To optimize the performance of three ML classifiers

namely SVM, Random forest and Neural Network, they employed grid-search

and learning curves. Moreover, to validate the performance of the classifiers,

in addition to the dataset which the authors collected, the UCI dataset was also

used.

Ashour et al. 2020 presented the LSTM based patient dependent model

for freezing of gait (FOG) detection from multiple body worn sensors posi-

tioned at different places like hip, knee and ankle. Measuring the freezing and

non-freezing signals using accelerometer from 9 patients, they firstly extracted

the features using the DWT combined with FFT and employed the traditional

ML algorithms such as SVM and ANN for classification. Secondly, they uti-

lized LSTM based classifier model for distinguishing freezing and non-freezing

cases in PD. Even though an average accuracy of 83% was achieved, the paper

fails to report the stage classification of PD. In addition, the experiments were

conducted on limited number of test subjects.

In another study, Zhao et al. 2018a, utilized dual channel LSTM for
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diagnosing the neurodegenerative diseases (ND) namely, amyotrophic lateral

sclerosis (ALS), Huntington’s disease (HD) and PD. To model the gait dynam-

ics of ND, they combined the force series with the time series and achieved a

maximum classification accuracy of 97.43%. Nevertheless, in the foot switch

system, only one sensor was used in each foot for acquiring gait pattern, leading

to partial gait dynamics acquisition.

In another direction, Oktay & Kocer 2020 presented a convolutional

LSTM technique to differentiate between Parkinsonian tremor (PT) and essen-

tial tremor (ET). Capturing the tremor using leap motion controller, which con-

sists of a 4D camera, they attempted to extract the significant features using

CNN and utilized the LSTM network for classifying the ET and PT. Nonethe-

less, the normalization technique and the approach followed to avoid the over-

fitting problem were not reported.

To overcome the limitations of hand-crafted features in ML approaches,

El Maachi et al. 2020. proposed a 1D deep neural network (DNN) for diagnos-

ing the PD using motor and non-motor symptoms. For assessing the perfor-

mance of the 1D convolutional neural network (1D Convnet), they utilized the

VGRF dataset from Physionet and classified the stages of PD based on UPDRS.

Even though the binary classification accuracy was significantly high, the max-

imum stage classification accuracy was limited to 85.3 %.

For differentiating the healthy controls from PD patients, extracting

the kinematic features from VGRF signals and performing frequency analy-

sis for tremor, Abdulhay et al. 2018 implemented two ML techniques such as

medium tree and Gaussian support vector machine (SVM). The fast Fourier

transform (FFT) of tremor signal was applied for identifying the frequency dis-

tribution. Even though the average accuracy of 92.7 % was achieved, the paper

reported only the binary classification and failed to assess the stages of PD.
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On a different approach, Senturk 2020 utilized a speech signal, which

is a non-motor symptom, for early diagnosis of PD using three ML algorithms

namely classification and regression trees (CART), SVM and artificial neural

network (ANN). For determining the most relevant features from the speech sig-

nal, recursive feature elimination (RFE) and feature importance techniques were

employed. Despite the significant improvement in SVM classifier performance

due to RFE method, the approach proposed in that paper required hand-crafted

features for classifying the PD subjects and healthy controls.

It is important to mention that considerable results have been re-

ported in the literature on diagnosing PD using ML approaches. However, one

of the major limitations of using ML algorithms is that the classifier needs the

hand-crafted features for categorizing the stages of PD. Hence, considerable

attention is being paid towards deep learning methods to avoid such manual

feature extraction and learn the significant features automatically using the deep

neural networks. The key reason for superior classification performance by deep

neural networks is their modular design in selecting the architecture, normaliza-

tion schemes and activation functions. Even though deep learning has been

largely applied in bioinformatics, little work has been reported for identifying

the severity of PD, which requires finer investigation for multi-class classifica-

tion. In this direction, the focal point of this work is to explore LSTM technique

to not only diagnose the presence of PD as a (binary classification problem) but

also classify the stages of PD based on H & Y scale.

5.3 Modified H&Y scale

The H&Y scale originally proposed in 1967 contains scales 1 to 5.

However, the movement disorder society (MDS) task force, introduced 0.5 in-

crements for some clinical tests based on Parkinsonian dysfunction and compro-

mised balance. Precisely, for describing the intermediate course of the disease,
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in the conventional H&Y scale, two additional stages 1.5 and 2.5 were intro-

duced, resulting in the widely accepted modified H & Y scale. Table 5.1 gives

the functionality and stages of PD based on the modified H & Y scale.

Table 5.1: PD severity rating based on the modified H & Y scale

Scale Functionality Stage

1 Unilateral involvement only No functional disability(NFD)

1.5 Unilateral and axial involvement NFD but Initial Phase

2 Bilateral Without Impairment of Balance(WOIB)

2.5 Mild bilateral disease with recovery on pull test With Impairment of Balance(WIB)

3 Mild to moderate bilateral disease With Impaired Postural Reflexes (WIPR)

4 Severe disability Still able to walk or stand unassisted

5 Confined to bed or wheelchair bound Completely Disabled

5.4 Methodology

Preprocessing

LSTM

LSTM

LSTM

LSTM

Softmax
Layer

Healthy

WIPR

WIB

WOB

xt−1

xt

xt+1

xf

Input Layer Hidden Layer

ht−1

ht

ht+1

hf

VGRF

Fully Connected

Layer

Figure 5.1: Proposed LSTM classifier for PD diagnosis
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Swing phase Stance phase

Stride phase

Figure 5.2: Kinematic gait parameters

Figure 5.1 shows the block diagram of the proposed LSTM based PD

severity prediction approach. The pre-processed VGRF signal, which is divided

into segments, is given to the LSTM input layer. Gait cycle, as illustrated in Fig-

ure 5.2, consists of significant spatiotemporal features to differentiate between

the healthy and PD patients (Moltedo et al. 2018). The two primary phases of

gait cycle namely swing and stance phases constitute 60% and 40% of total gait

cycle. Capturing these spatiotemporal features through VGRF sensors help to

identify the significant biomarkers for effective classifications. In the next sec-

tion,we briefly present the LSTM classifier along with the regularization tech-

nique.
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5.4.1 LSTM Overview

σ σ σtanh

tanh
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ht

Figure 5.3: LSTM block diagram with gating mechanism

To overcome the major limitations of vannila RNN, such as explod-

ing and vanishing gradient problems, Hochreiter and Schmidhuber put forward

a LSTM, which has the capability to learn the long-term dependencies among

sequential data sets (Yildirim 2018; Zheng et al. 2020). To enhance the learning

process and mitigate vanishing gradient problem, unlike RNN, LSTM consists

of memory cells in place of each traditional node in the hidden layer, thereby

the information can be stored and accessed over a long period of time. Typi-

cally, LSTM networks are widely used in time series prediction such as machine

translation, air pollution forecasting, weather forecasting and speech recognition

(Hosny et al. 2020).

Figure 5.3 shows the architecture of LSTM, which consists of mem-

ory blocks and memory cells in the hidden layer. The memory block contains

three gate units namely, input gate, forget gate and output gate. To avoid the

negative effects due to unrelated inputs, the multiplicative gate units are utilized

(Wang & Chen 2019). The forget gate determines the quantity of information

to be retained or forgotten from the memory cell. The activation function of the
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forget gate is computed as follows.

ft = σ(Wh f ht−1 +Wx f xt +b f ) (5.1)

where b is the bias vector,ht−1 is the previous block output, xt is the input

sequence;wh f and wx f represent the weight matrices for the output vector of

precedent cell and input vector of current cell, respectively, in the forget gate. σ

is the sigmoid function given by

σ(x) = (1+ e−x)−1 (5.2)

The input layer determines what information can be stored in the memory cell

from the current input vector as follows.

it = σ(Whiht−1 +Wxixt +bi) (5.3)

where Whi and Wxi represent the weight matrices for the output vector of prece-

dent cell and input vector of current cell, respectively, in the input layer. bi

depicts the bias in the input gate layer. Finally, the output gate layer, which

decides which output can be passed in the current time step, is defined as

ot = σ(Whoht−1 +Wxoxt +bo) (5.4)

where Who and Wxo indicate the weight matrices for the output vector of prece-

dent cell and input vector of current cell, respectively, in the output gate layer.

Hence, integrating the forget gate and input, the current cell state is computed

by

Ct = ft�Ct−1 + it�C
′

t (5.5)

where Ct is the cell state at time step t and � is the Hadamard product that

indicates element-wise multiplication of vector. ft �Ct−1 and it �C
′

t decide

the information to be inherited from the precedent cell state and current input,
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respectively (Arslan & Sekertekin 2019). Hence, C
′
is determined based on the

tanh activation function.

C
′

t = tanh(WhCht−1 +WxCxt +bC) (5.6)

The hidden state is determined by multiplying the output gate with the current

cell state.

ot = ht� tanh(Ct) (5.7)

5.4.2 Reducing overfitting

DNN with a large number of learnable parameters are susceptible to

overfitting problems, particularly when trained using a relatively small dataset.

Consequently, the DNN model lacks the generalization ability to classify the

new test sample (He et al. 2020). The possible reasons for overfitting in deep

learning algorithms are less training data, noisy input data and high dimensional

input space. Hence, regularization techniques are used to reduce the overfitting

issue in the DNN model. In this application, we have used the L2 regularization

and dropout techniques to address the overfitting issue.

5.4.3 L2 Regularization

L2 regularization is a process of changing the loss function to pe-

nalize the weights which are large, consequently reducing the generalization

error. Basically, L2 regularization, also called ridge regression, adds a function

of weights to the loss function to avoid the weights from growing too large be-

cause large weight makes the DNN model more sensitive to noise in the input
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data. The cost function used in L2 regularization is as follows.

L̂(ω,X) = L(ω,X)+λR(ω) = L(ω,X)+λ∑
i
|ω2

i | (5.8)

where L(w,X) can be a cross entropy loss function. λ indicates the regulariza-

tion strength that has fine influence over the total loss function L̂(ω,X). It is

important to note that as R(ω) is convex, when it is attached to the convex loss

function, the resultant function will still be convex.

5.4.4 Dropout

Unlike L2 regularization method which modifies the cost function,

dropout alters the connections, thereby dropping neurons with p probability.

Dropout follows the concept of co-adaptation avoidance among the hidden nodes

of DNN by randomly dropping out chosen hidden nodes (Ha et al. 2019). Hence,

the fundamental idea behind dropout is that while training a DNN, some parts

of the model is dropped out stochastically in each iteration, thereby training ex-

ponential number of models and combining them into a single model during

validation. The forward propagation with dropout is represented as

z j = ∑
i

Wi jdixi +bi (5.9)

where di is a vector of independent Bernoulli random variables with probability

p. If di is zero, the input node xi will be dropped out.

5.4.5 Softmax Layer

The final layer of the DNN classifier is the softmax layer, which de-
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termines the probability of the input that belongs to a particular class.

hθ(x) =



p(y = 1|x;θ)

p(y = 2|x;θ)

...

p(y =C|x;θ)


=

1

∑
C
i=1 e(θT

i x)



e(θ1x)

e(θ2x)

...

e(θCx)


(5.10)

The following cross entropy loss function, also called negative log likelihood,

which measures the dissimilarity between predicted distribution q and true label

distribution p, is used to update the w and b during training.

H(p,q) =−∑
x

p(x)logq(x) (5.11)

Integrating the aforementioned steps, the pseudo code of the proposed LSTM

network classifier for PD diagnosis is given in Algorithm 5.1.
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Algorithm 5.1 PD prediction using LSTM
1: Input:d-dimensional gait pattern x, trained LSTM model
2: Output: Predicted stages of PD
3: Initialization: No of gait signals =18,No of classes (C)= 4, d=12000, M=500
4: procedure (PD-LSTM(x, C,LSTM))
5: Select gait segment length (L)
6: Partition the VGRF signals into M segments (300×1, 500×1)
7: while i≤M do
8: zt = g(Wzxt +Rzyt−1 +bz) . LSTM Input
9: it = σ(Whiht−1 +Wxixt +bi) . Input gate

10: ft = σ(Wh f ht−1 +Wx f xt +b f ) . Forget gate
11: Ct = ft�Ct−1 + it�C

′

t . Cell
12: ot = σ(Whoht−1 +Wxoxt +bo) . Output gate
13: ot = ht� tanh(Ct) . LSTM Output
14: st = ht(yt) . FC Layer
15: end while
16: E = AP(st ,st−1, ...st−M); . Average pooling
17: Determine PC = {P1, ...,Pc} ← Softmax(E)
18: Compute IHP← Support (max(PC)) . Index of highest probability
19: ŷ = IHP; . Predicted classes
20: end procedure

5.4.6 Adam Optimization

Adam optimization algorithm, which is a combination of root mean

square propogation (RMSProp) and gradient descent with momentum algorithms,

is one of the widely used algorithms to train DNNs (Fei et al. 2020). Adam,

which is not an acronym but the named coined by the authors from "adaptive

moment estimation", can be substituted with the standard stochastic gradient de-

scent algorithm for updating the DNN weights (Chang et al. 2019). It is a first

order stochastic optimization technique that maintains the exponential moving

averages of gradient and squared gradient. This method has less memory re-

quirement and requires only few hyper-parameters tuning. Moreover, the pa-

rameter updates guarantee bounded norm. Hence, Adam optimization has been

widely used in several DNN applications (Kingma & Ba 2014). Algorithm 5.2
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presents the Adam optimization for solving the stochastic cost function. The

fundamental idea behind the Adam optimization is as follows. Firstly, the de-

caying averages of past gradient and its square are calculated.

mt = β1.mt−1 +(1−β1).gt (5.12)

mt = β1.mt−1 +(1−β1).gt (5.13)

where mt and vt indicate the 1st and 2nd moments of the gradients, respectively.

Since, the procedure begins with mt and vt being initialized as vectors of 0’s,

resulting in moment estimates biased towards zero, to correct the initialization

bias, the first and second moments are updated as follows.

m̂t = mt/(1−β
t
1) (5.14)

v̂t = vt/(1−β
t
2) (5.15)

Then, to update the parameters, the following Adam update rule is used.

θt = θt−1−α.m̂t/(
√

v̂t + ε) (5.16)

Algorithm 5.2 Adam optimization
1: Require: stepsize α, exponential decay rates for the moment estimates

β1,β2 ∈ [0,1], stochastic objective function f (θ) with parameters θ

2: Initialize: Parameter vector θ, timetep t = 1, ...,T
3: Initialize: 1stmoment and 2ndmoment vectors: m0 = 0, v0 = 0
4: while until θt converges do
5: i = i+1
6: Find gradients gt ← ∆θ ft(θt−1)
7: Update 1st moment estimate mt ← β1.mt−1 +(1−β1).gt
8: Update 2ndraw moment estimate vt ← β2.vt−1 +(1−β2).g2

t
9: Calculate bias corrected first moment estimate m̂t ← mt/(1−βt

1)
10: Calculate bias corrected second moment estimate v̂t ← vt/(1−βt

2)
11: Update parameters θt ← θt−1−α.m̂t/(

√
v̂t + ε)

12: Return θt
13: end while
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5.5 Results and Discussion

Each gait pattern from the Physionet consists of 18 columns of data,

including 16 VGRF sensor signals and 2 cumulative values of left and right feet

sensors. Firstly, to mitigate the gait initiation and end-up effects, 10s data from

the start and 20s data at the end are removed. The three datasets Ga, JU and Si

consist of data samples of 13500, 11730 and 7700 respectively. Table 5.2 gives

the parameter configuration of LSTM network, which contains 4 LSTM layers,

4 dropout layers, followed by a fully connected layer and a softmax layer. For

multi-class stage prediction, a cross entropy loss function is used. The LSTM

network is trained for 50 epochs and the experiments are implemented using

Keras library with TensorFlow backend. 80% of the dataset is used for training

the LSTM network and 20% of the dataset is used for testing.

The LSTM network consists of 50 hidden units and utilizes “ReLU”

nonlinear activation function for efficient gradient propagation. To avoid the

overfitting, L2 regularization is used along with the dropout layers. To regular-

ize the dataset and improve the model performance the dropout rate is set to 0.2.

To minimize the loss function, the following hyper-parameters of Adam opti-

mization algorithm are configured: the learning rate α = 0.001, the decay rates

β1 = 0.9, β2 = 0.99, constant ε = 10−8 and the threshold δ = 10−5. Finally, the

softmax layer predicts the probability of the input sequence which belongs to

any of the four classes namely healthy, WOIB, WIB, and WIPR.
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Table 5.2: LSTM Configuration

Layers Type of layer Properties Parameters
Layer 1 Sequence input 1 dimension -

Layer 2 LSTM 50 units, (N:300,500)input shape 13800

Layer 3 Dropout 0.2 dropout rate 0

Layer 4 LSTM 50 units 20200

Layer 5 Dropout 0.2 dropout rate 0

Layer 6 LSTM 50 units 20200

Layer 7 Dropout 0.2 dropout rate 0

Layer 8 LSTM 50 units 20200

Layer 9 Dropout 0.2 dropout rate 0

Layer 10 Fully connected 50 layer output 0

Layer 11 Dense ReLU activation, 25 units 1125025

Layer 12 Dense Softmax-4 classes 104

5.5.1 Binary classification

Firstly, the performance of the LSTM network to predict the presence

of PD is formulated as a binary classification problem. To visualize the predic-

tion rate of the LSTM classifier, the confusion matrix (CM), which is also called

an error matrix, is illustrated in Figure 5.4. The diagonal entries of CM repre-

sent the correct prediction of the classes and the non-diagonal values indicate the

misclassification rate. We can read from Figure 5.4, which illustrates the CM of

two class classification problem, that the LSTM network classifies the healthy

and PD patients with an accuracy of 98.6%. The misclassification in the case

of PD and healthy are 1 % and 0.4%, respectively. Figure 5.5a, which shows

the accuracy plot, highlights that the gap between the validation and training

is significantly less, thereby avoiding the overfitting issue. Moreover, the loss

function plot, illustrated in Figure 5.5b, gives the quantitative loss measure at
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each epoch to identify the direction in which the LSTM is trained towards clas-

sifying the input pattern. The minimum loss function value of around 0.1 is an

indication that the model converges considerably quickly and both training and

validation performances are quite similar. The convergence behaviour of the

network underscores that the mean squared error (MSE) is a good match for the

prediction.

Figure 5.4: Confusion matrix for binary classification
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Figure 5.5: Accuracy and loss function plots for binary classification

5.5.2 Multi-class classification

Even though the LSTM model provides high accuracy in binary clas-

sification, the progression of the PD needs to be evaluated so as to decide the

severity of the PD for further medication/therapy. Hence, we divide the gait time
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series data into segments of 300 ×1(F1) and 500 ×1(F2) and provide them as an

input to LSTM network. Figure 5.6 shows the VGRF time series data for 300×1

and 500 ×1 frames. Compared to F1 frame the occurrence of swing and stride

are more in F2, which can assist the deep learning model to train the network

effectively.
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Figure 5.6: VGRF input frame-(a) 300×1 (b)500×1
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(a)

(b)

Figure 5.7: Confusion matrix (a) 300X1 (b) 500X1

Figure 5.7 shows the CM for multi-class classification problem. We

can note that for the input segment F1, the classifier predicts the healthy and

WIPR classes with an accuracy of 96.00% and 97.01%, respectively. The mis-

classification rate in the case of WIB and WOIB are 0.7% and 2.7%. In the case

of input segment F2, we can notice a marginal increase in the classifier perfor-

mance with the highest accuracy being 96.60%. The misclassification rate is
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also slightly reduced in the case of F2 frame because the network can exploit the

repetitiveness of the gait kinematic features such as swing time, stride time and

stance.

Table 5.3 gives the six performance metrics of LSTM classifier for

both F1 and F2 frames. Comparing the average specificity of F1 and F2 frames,

we can note that the latter has significant improvement of 1.2. Interestingly,

the F score of WIPR for F2 frame is significantly higher than that of F1 frame

because when the subject is in WIPR stage, the movement of the patient is gen-

erally slower compared to other stages. Hence, the larger frame segment cap-

tures more number of kinematic features and yields better F-score. Moreover,

to highlight the multi-class classification performance during training and vali-

dation phases, the accuracy and loss function plots are illustrated in Figure 5.8

and 5.9, respectively. The combination of L2 regularization technique and the

dropout layer significantly reduces the overfitting, which is evident from the ac-

curacy plot. For graphically depicting the dispersion of accuracy, sensitivity and

specificity of the LSTM classifiers for two frames, the box plot is illustrated in

Figure 5.10. The box plot highlights the significant improvement in the classi-

fier performance for the increased frame size to effectively classify the stages of

PD. Table 5.4 gives the comparison of performance of the proposed approach

with those of the other state-of-the-art methods that have used VGRF dataset. It

is evident that the proposed approach offers better accuracy and specificity.
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Figure 5.8: Accuracy plot (a) 300X1 (b) 500X1
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Figure 5.9: Loss plot (a) 300X1 (b) 500X1
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Table 5.3: LSTM network classification performance metrics

Parameters
300X1 500X1

Healthy WOIB WIB WIPR Healthy WOIB WIB WIPR

Acc (%) 96.00 95.98 96.04 96.01 96.80 96.70 98.00 98.70

Sen (%) 96.02 95.40 94.62 90.03 96.20 95.20 94.60 96.20

Spe (%) 96.40 96.10 97.80 98.98 97.3 97.60 98.70 98.70

PPV (%) 95.00 95.70 92.10 91.20 96.20 95.90 93.10 96.21

F-score (%) 95.50 95.20 92.12 91.00 96.21 95.60 94.10 96.40

MCC 0.94 0.92 0.93 0.96 0.97 0.96 0.96 0.97
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Figure 5.10: Box plot for accuracy, sensitivity and specificity
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Table 5.4: Comparison of proposed approach with other reported approaches

References Classifiers Acc (%) Sen (%) Spe (%)

Paragliola & Coronato 2018 CNN 92.00 85.10 88.21

Ashour et al. 2020 LSTM 83.89 88.72 84.89

Oktay & Kocer 2020 LSTM 90.00 95.24 86.96

Khoury et al. 2019a RF 90.91 85.35 88.35

Abdulhay et al. 2018 SVM 92.7 96.13 92.21

Veeraragavan et al. 2020 ANN 87.10 67.90 90.50

Proposed
Adam-LSTM (Multi-class) 96.60 96.20 98.08

Adam-LSTM (Binary) 98.60 98.23 99.10

5.6 Summary and future scope

This work has presented a LSTM network for early and non-invasive

diagnosis of PD based on gait pattern. LSTM, which is largely suited for se-

quential data analysis, has the capability to extract the long-term dependencies

from time series data. Hence, we have utilized the VGRF gait time series dataset

from Physionet for differentiating the healthy control and PD patients. Since

three input datasets have different sample size, to normalize the input pattern to

LSTM network, the input frame has been divided into two different segments

and the experiments are conducted using Tensorflow backend. The dropout and

L2 regularization techniques used in this approach has significantly reduced the

data overfitting, which is evident from the accuracy and loss function plots. Par-

ticularly, the PD diagnosis is formulated as a binary class and multi-class classi-

fication problems and an Adam optimized LSTM is used to identify the severity

of PD based on UPDRS and H&Y scale. The LSTM classifier performance



100

is assessed using six key performance metrics and the results substantiate that

the proposed approach performs better than the state-of-the-art techniques that

used gait based PD diagnosis. The major limitation of the proposed approach is

the computational time, which is around five hours for 50 epochs in the case of

multi-class classification. Hence, as a future work, we aim to explore the opti-

mal selection of input frame and number of epochs for improved accuracy and

reduced time complexity. Moreover, as this study is based on only gait analysis,

it is indeed limited to people who are able to walk and fall under the H &Y scale

1-3. Hence, as a further investigation, both motor and non-motor symptoms can

be assessed for PD prognosis of people who are either wheel chair bounded or

need assistance in walking. Moreover, from the deep learning algorithms stand

point, even though LSTM offers very good performance in the gait time series

classification, the two major limitations of LSTM are the long training time and

high sensitivity to random weight initialization. Hence, currently, significant re-

search attention is also paid to developing a light weight CNN-LSTM model that

can reduce the training time and is robust against weight initialization effects.
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CHAPTER 6

CONCLUSIONS

To assist the neurologists in PD diagnosis and minimize the misclas-

sification rate in quantifying the stages of PD, a gait classification framework

using supervised machine learning algorithms is put forward. Assessing the

gait abnormality based on the VRGF dataset using the statistical and kinematic

analyses, we have extracted optimal diagnostic biomarkers from spatiotemporal

domain and implemented a 10 fold cross validation technique to avoid data over-

fitting. Moreover, the performance of the classifiers is assessed using the confu-

sion matrix and the ROC curves. Unlike most of the previous machine learning

based approaches which are binary classification problem that detects only the

presence of PD, the proposed approach can perform a multi-class classification

and quantify the stages of PD. Experimental validation substantiates that com-

pared to several state-of-the-art methods, the proposed approach, which uses

optimal spatiotemporal domain features, can offer better prediction of stages

of PD based on the H & Y scale. Moreover, to avoid the hand-crafted feature

selection in the machine learning algorithms, we have also explored two deep

learning models such as CNN and LSTM for stage classification of PD.

Experimental results substantiate that the proposed gait classification

framework provides an average stage classification accuracy of 98.4 % and 96.6

% for CNN and LSTM, respectively. Even though the proposed gait classifica-

tion frameworks provide better classification accuracy compared to other meth-

ods reported on the same dataset, it is also important to mention the limitations

of the proposed study. In the current study, we considered only the significant

motor symptoms of PD for classification. However, to improve the prediction
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rate, the non-motor symptoms can also be considered. Moreover, in addition

to the gait pattern, the tremor dataset can also be assessed for enhancing the

accuracy of the stage classification.
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25. Ertuğrul, Ö. F., Kaya, Y., Tekin, R., & Almalı, M. N. 2016, ‘Detection of

parkinson’s disease by shifted one dimensional local binary patterns from gait’,

Expert Systems with Applications, vol. 56, pp. 156–163.

26. Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. 2019,

‘Deep learning for time series classification: a review’, Data Mining and Knowl-

edge Discovery, vol. 33, no. 4, pp. 917–963.

27. Fei, Z., Wu, Z., Xiao, Y., Ma, J., & He, W. 2020, ‘A new short-arc fitting method

with high precision using adam optimization algorithm’, Optik, pp. 164788.

28. Figueiredo, J., Santos, C. P., & Moreno, J. C. 2018, ‘Automatic recognition

of gait patterns in human motor disorders using machine learning: A review’,

Medical engineering & physics, vol. 53, pp. 1–12.

29. Ghaddar, B. & Naoum-Sawaya, J. 2018, ‘High dimensional data classification

and feature selection using support vector machines’, European Journal of Op-

erational Research, vol. 265, no. 3, pp. 993–1004.

30. Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G. T., Counsell,

C., Giladi, N., Holloway, R. G., Moore, C. G., Wenning, G. K., et al. 2004,

‘Movement Disorder Society Task Force report on the Hoehn and Yahr staging

scale: status and recommendations the Movement Disorder Society Task Force

on rating scales for Parkinson’s disease’, Movement disorders, vol. 19, no. 9,

pp. 1020–1028.

31. Gupta, U., Bansal, H., & Joshi, D. 2020, ‘An improved sex-specific and

age-dependent classification model for parkinson’s diagnosis using handwrit-

ing measurement’, Computer Methods and Programs in Biomedicine, vol. 189,

pp. 105305.



107

32. Ha, C., Tran, V.-D., Van, L. N., & Than, K. 2019, ‘Eliminating overfitting

of probabilistic topic models on short and noisy text: The role of dropout’,

International Journal of Approximate Reasoning, vol. 112, pp. 85–104.

33. Hausdorff, J. M., Lowenthal, J., Herman, T., Gruendlinger, L., Peretz, C., &

Giladi, N. 2007, ‘Rhythmic auditory stimulation modulates gait variability in

parkinson’s disease’, European Journal of Neuroscience, vol. 26, no. 8, pp.

2369–2375.

34. He, K., Zhang, X., Ren, S., & Sun, J. 2016, ‘Deep residual learning for im-

age recognition’, Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 770–778.

35. He, T., Liu, Y., Yu, Y., Zhao, Q., & Hu, Z. 2020, ‘Application of deep con-

volutional neural network on feature extraction and detection of wood defects’,

Measurement, vol. 152, pp. 107357.

36. Hosny, M., Zhu, M., Gao, W., & Fu, Y. 2020, ‘A novel deep LSTM network for

artifacts detection in microelectrode recordings’, Biocybernetics and Biomedi-

cal Engineering.

37. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. 2017, ‘Densely

connected convolutional networks’, Proceedings of the IEEE conference on

computer vision and pattern recognition, pp 4700–4708.

38. Huang, Y. S. & Suen, C. Y. 1993, ‘The behavior-knowledge space method

for combination of multiple classifiers’, IEEE computer society conference on

computer vision and pattern recognition, pp 347–347,Institute of Electrical En-

gineers Inc (IEEE).

39. Joshi, D., Khajuria, A., & Joshi, P. 2017, ‘An automatic non-invasive method

for parkinson’s disease classification’, Computer methods and programs in

biomedicine, vol. 145, pp. 135–145.



108

40. Khoury, N., Attal, F., Amirat, Y., Oukhellou, L., & Mohammed, S. 2019a,

‘Data-driven based approach to aid parkinson’s disease diagnosis’, Sensors,

vol. 19, no. 2, pp. 1–27.

41. Khoury, N., Attal, F., Amirat, Y., Oukhellou, L., & Mohammed, S. 2019b,

‘Data-driven based approach to aid Parkinson’s disease diagnosis’, Sensors,

vol. 19, no. 2, pp. 242.

42. Kim, H. B., Lee, W. W., Kim, A., Lee, H. J., Park, H. Y., Jeon, H. S., Kim, S. K.,

Jeon, B., & Park, K. S. 2018, ‘Wrist sensor-based tremor severity quantifica-

tion in parkinson’s disease using convolutional neural network’, Computers in

biology and medicine, vol. 95, pp. 140–146.

43. Kingma, D. P. & Ba, J. 2014, ‘Adam: A method for stochastic optimization’,

arXiv preprint arXiv:1412.6980.

44. Kittler, J. 1998, ‘Combining classifiers: A theoretical framework’, Pattern

analysis and Applications, vol. 1, no. 1, pp. 18–27.

45. Korkmaz, S., Zararsiz, G., & Goksuluk, D. 2014, ‘Drug/nondrug classification

using support vector machines with various feature selection strategies’, Com-

puter methods and programs in biomedicine, vol. 117, no. 2, pp. 51–60.

46. Lee, S.-H. & Lim, J. S. 2012, ‘Parkinson’s disease classification using gait

characteristics and wavelet-based feature extraction’, Expert Systems with Ap-

plications, vol. 39, no. 8, pp. 7338 – 7344.

47. Li, Y., Huang, C., Ding, L., Li, Z., Pan, Y., & Gao, X. 2019, ‘Deep learning in

bioinformatics: Introduction, application, and perspective in the big data era’,

Methods, vol. 166, pp. 4–21.

48. Luts, J., Ojeda, F., Van de Plas, R., De Moor, B., Van Huffel, S., & Suykens, J. A.

2010, ‘A tutorial on support vector machine-based methods for classification

problems in chemometrics’, Analytica Chimica Acta, vol. 665, no. 2, pp. 129–

145.



109

49. Martínez, M., Villagra, F., Castellote, J. M., & Pastor, M. A. 2018, ‘Kinematic

and kinetic patterns related to free-walking in parkinson’s disease’, Sensors,

vol. 18, no. 12, pp. 4224.

50. Mirelman, A., Bonato, P., Camicioli, R., Ellis, T. D., Giladi, N., Hamilton,

J. L., Hass, C. J., Hausdorff, J. M., Pelosin, E., & Almeida, Q. J. 2019, ‘Gait

impairments in Parkinson’s disease’, The Lancet Neurology.
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