
iii 

 

 

 

ABSTRACT 

Software systems are interconnecting software components which 

form a part of a computer system. Every system is modeled by considering 

two important aspects, structure and behaviour. A large and intricate software 

system can be described structurally with the help of its architecture and also 

the structural aspects of its individual components. Structural characteristics 

play a significant role in evaluating the reusability of software systems. This 

research addresses issues related to the structure of software systems such as 

organization of the system in terms of the components and their relationships, 

which are static models. 

Louis Pasteur has stated that science is as mature as its measurement 

tools. Producing high quality software is a prerequisite for satisfying the 

requirements of any software. To accomplish this, more research is needed in 

defining and measuring software quality as well as a way to derive metrics for 

quantifying software. Metrics are quantitative measures of the software 

attributes related to the quality factors. The factors affecting software quality 

are categorized in terms of three software product activities namely, product 

operation, product revision, and product transition (Mc Call et al. 1977b). The 

software quality attributes considered in this research are maintainability (in 

the product revision phase) and reusability (in the product transition phase). 

Maintainability is the effort needed to find and troubleshoot an error in an 

operational program while reusability is the effort required to use software in 

a different application. Design Pattern is a technique to communicate object-

oriented design knowledge. Design Patterns play many roles in the object-

oriented software development process such as, contribute a universal design 

vocabulary, help in curtailing system complexity by using abstractions, 



iv 

 

 

 

represent a foundation of experience for constructing reusable software, and 

operate as building blocks which form the basis for complex designs. 

A new design pattern is proposed with the name Shuffler, which aids 

to select generic shuffling alternatives that make a system reusable. Shuffling 

is a method which deals with jumbling or interchanging the objects‟ position 

in the collection. It may be applied to games such as Jigsaw, Sudoku, Word 

games, etc. It has many known uses in the software industry. The design 

pattern Shuffler is documented in the Gang of Four (GoF) design pattern 

template so that the design reusers can interpret the significance of the 

pattern. 

The impact of Shuffler design pattern on the quality of software 

systems is analyzed. The software systems considered for empirical 

evaluation are gaming applications namely, Jigsaw, Poker, and Scramble. The 

reusability quality attribute is linked to the low-level quality features such as 

cohesion, coupling, inheritance, size, and complexity. The Eclipse plug-in 

Metrics is used to compute the object-oriented metrics linked to the low-level 

quality features. The gaming applications before refactoring are evaluated 

with the Metrics tool. Further, the pattern Shuffler is used to refactor the 

gaming applications and these redesigned applications are again assessed 

using the tool. A comparative study of the gaming applications before and 

after refactoring proves that the Shuffler pattern has a positive impact on 

object-oriented metrics. Additionally, these applications are assessed with 

reusability metrics for software components. Further, the Shuffler pattern 

merged with two (Gang of Four) GoF creational design patterns namely, 

Singleton and Prototype, is used to redesign the applications. Singleton is a 

design pattern which assures that a class has one instance, and provides a 

method to access that unique instance. Prototype is a design pattern which 

defines the type of objects to construct using the typical instance built 



v 

 

 

 

initially, and further generate new objects by cloning this prototypical 

instance. These refactored systems are analyzed further to compute the object-

oriented metrics.  

A novel design pattern named Bout serves to the effective storage of 

the client data in software systems with distributed or cloud architectures. 

This pattern is fitted into the well-known GoF pattern template thus, 

entertaining the adoption of design patterns. The Bout pattern provides 

integrity of client information despite multiple requests and responses from 

clients across the network. When a client makes a request to the server, a 

session is created and stored in a cache for a specific time period till the 

session expires. A HashMap is used to store data pertaining to clients in the 

server. Singleton pattern is used to return the same session object for the same 

client, though requested from different nodes in the network. When a new 

session is created, Prototype pattern is used to clone the session object and 

relevant updates are done. For example, a job portal system is considered and 

designed with Bout pattern integrated with Factory Method, Observer, and 

Decorator design patterns. The Factory Method designates a method/function 

for creating objects though subclasses determine the class to instantiate. The 

Observer pattern specifies a one-to-many relationship between the objects 

such that if one of the object changes, all its dependents are kept informed and 

automatic updates are done. The Decorator design pattern hooks up added 

responsibilities to an object spontaneously. The impact of these patterns on 

low-level quality attributes namely, object-oriented metrics, component 

reusability metrics, and modularity metrics is evaluated. The metrics show 

noteworthy improvement when the system is refactored with patterns.  

The adoption of existing software artifacts or software experiences to 

construct new systems is termed as software reuse. Reuse may be in different 

forms namely, code, library, tools, design, packages, and components. This 



vi 

 

 

 

research narrows down to the importance and measurement of package reuse.  

The search engines do not provide much support for the rating of pertinent 

package candidates for reuse. Since Python is the fastest growing 

programming language, Python‟s largest repository Python Package Index 

(PyPI) is considered for extracting Python packages. Two core software 

reusability measures namely coupling and cohesion are evaluated to compute 

the package reusability score. This score is compared with the existing 

reusability metrics namely, Cyclomatic Complexity and Maintainability Index 

(MI). It is proved that packages with high reusability scores bring about lesser 

values for Halstead‟s reuse effort. Further, the package reusability score is 

validated using code detuners, which inject erratic reusability deficiencies in 

the source code of Python packages. 

A software ecosystem is a synergy of a set of actors which interact 

with a common technical platform comprising number of software solutions 

and services. The enormous growth of software ecosystems has necessitated 

the analysis of quality of individual software, ecosystem dependency health, 

and developer community activities. The proposed research assesses the 

health of Python software ecosystem PyPI, based on the health of individual 

Python packages and their dependencies. The health of a package is evaluated 

in terms of Maintainability Index (MI), number of active maintainers, 

download count, and unsolved issues. The health of a package based on its 

dependency is assessed based on the Number of Modules (NOM) and Lines 

Of Code (LOC) imported. To evaluate the health of the package 

dependencies, complex network properties are applied to the package 

dependency network modeled as weighted directed multigraphs. 

This research work, thus evaluates open-source software systems and 

software packaging ecosystems based on the non-functional aspects which 

helps developers in code restructuring using design patterns. The empirical 



vii 

 

 

 

study carried out also measures the reusability of open-source packages to 

assist reusers in providing non-functional suitability. The health of huge 

software packaging ecosystems is assessed finally.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


